
Object-Oriented Software

Engineering with Ei�el

Jean-Marc J�ez�equel

ISBN 0-201-63381-7

Chapters 1, 2, 3, 4 made available for private use

with kind permission from Addison-Wesley.

Warning: The page layout here is di�erent from the original book





3

To Chantal, Gwena�elle, Nolwenn, and Erwan.
To my parents, who helped me buy my �rst computer in 1980.

J.-M. J�ez�equel { Object-Oriented Software Engineering with Eiffel { (c) Addison-Wesley



4

J.-M. J�ez�equel { Object-Oriented Software Engineering with Eiffel { (c) Addison-Wesley



Contents

Preface 9
Acknowledgments : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

1 The Software Engineering Context 13
1.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

1.1.1 What's the big deal about programming a computer? 13
1.1.2 Programming in the small : : : : : : : : : : : : : : : 14
1.1.3 Programming in the large : : : : : : : : : : : : : : : 15

1.2 The Object-Oriented Approach : : : : : : : : : : : : : : : : 18
1.2.1 Origin : : : : : : : : : : : : : : : : : : : : : : : : : : 18
1.2.2 De�nitions in the Context of Software Engineering : 18
1.2.3 Object-Oriented Analysis and Design : : : : : : : : 20

1.3 Ei�el: An Object-Oriented Language for Software Engineering 21
1.3.1 A Software Engineering Tool : : : : : : : : : : : : : 21
1.3.2 Importance of a Language : : : : : : : : : : : : : : : 23
1.3.3 An Ei�el Overview : : : : : : : : : : : : : : : : : : : 23
1.3.4 Status of the Ei�el Language : : : : : : : : : : : : : 25

I Language Elements 27

2 Basic Language Elements of Ei�el 29
2.1 The Ei�el Notion of Systems : : : : : : : : : : : : : : : : : 29

2.1.1 System and Program : : : : : : : : : : : : : : : : : : 29
2.1.2 \Hello, world!" : : : : : : : : : : : : : : : : : : : : : 30

2.2 Class = Module = Type : : : : : : : : : : : : : : : : : : : : 31
2.2.1 Foundation Principles : : : : : : : : : : : : : : : : : 31
2.2.2 The Class as a Module : : : : : : : : : : : : : : : : : 31
2.2.3 The Class as a Type : : : : : : : : : : : : : : : : : : 32
2.2.4 Components of a Class Declaration : : : : : : : : : : 33

5



6 CONTENTS

2.3 De�nition of Entity Declaration : : : : : : : : : : : : : : : : 37
2.3.1 Entity Declaration : : : : : : : : : : : : : : : : : : : 37
2.3.2 Entity Expansion Status : : : : : : : : : : : : : : : : 37
2.3.3 Constant Entities : : : : : : : : : : : : : : : : : : : : 38
2.3.4 Default Initialization Rule for Entities : : : : : : : : 40

2.4 Statements : : : : : : : : : : : : : : : : : : : : : : : : : : : 41
2.4.1 Assignment : : : : : : : : : : : : : : : : : : : : : : : 41
2.4.2 Testing for Equality : : : : : : : : : : : : : : : : : : 43
2.4.3 Sequence : : : : : : : : : : : : : : : : : : : : : : : : 43
2.4.4 Conditional : : : : : : : : : : : : : : : : : : : : : : : 44
2.4.5 Multi-branch Choice : : : : : : : : : : : : : : : : : : 45
2.4.6 Iterative Control: The Loop : : : : : : : : : : : : : : 47
2.4.7 Designing Correct Loops with Loop Assertions : : : 48
2.4.8 The Check Statement : : : : : : : : : : : : : : : : : 53
2.4.9 The Debug Statement : : : : : : : : : : : : : : : : : 54

2.5 Routines: Procedures and Functions : : : : : : : : : : : : : 54
2.5.1 Routine Declaration : : : : : : : : : : : : : : : : : : 55
2.5.2 Arguments to a Routine : : : : : : : : : : : : : : : : 56
2.5.3 Preconditions, Postconditions, and Invariants : : : : 57
2.5.4 Calling a Routine : : : : : : : : : : : : : : : : : : : : 60
2.5.5 Internal Routine Body : : : : : : : : : : : : : : : : : 60
2.5.6 Once Routines : : : : : : : : : : : : : : : : : : : : : 62
2.5.7 Pre�x and In�x Function Declaration : : : : : : : : 62
2.5.8 Recursion : : : : : : : : : : : : : : : : : : : : : : : : 65

2.6 Example: Sorting Data with Ei�el : : : : : : : : : : : : : : 67

3 Object-Oriented Elements 73
3.1 Working with Modules : : : : : : : : : : : : : : : : : : : : : 73

3.1.1 Creating Objects : : : : : : : : : : : : : : : : : : : : 74
3.1.2 Calling Other Object Features : : : : : : : : : : : : 76
3.1.3 Attribute Protection and Information Hiding : : : : 77
3.1.4 Restricted Export and Subjectivity : : : : : : : : : : 79
3.1.5 Using Ei�el Strings : : : : : : : : : : : : : : : : : : : 80
3.1.6 Building a Linked List Class : : : : : : : : : : : : : 84

3.2 Genericity : : : : : : : : : : : : : : : : : : : : : : : : : : : : 86
3.2.1 Generic Classes : : : : : : : : : : : : : : : : : : : : : 86
3.2.2 Generic Class Derivation : : : : : : : : : : : : : : : : 87
3.2.3 A Standard Ei�el Generic Class: The Array : : : : 88

3.3 Inheritance : : : : : : : : : : : : : : : : : : : : : : : : : : : 90
3.3.1 The Dual Nature of Inheritance in Ei�el : : : : : : : 90
3.3.2 Module Extension : : : : : : : : : : : : : : : : : : : 91
3.3.3 Subtyping : : : : : : : : : : : : : : : : : : : : : : : : 92

J.-M. J�ez�equel { Object-Oriented Software Engineering with Eiffel { (c) Addison-Wesley



CONTENTS 7

3.3.4 Inheritance and Expanded Types : : : : : : : : : : : 94
3.3.5 Implicit Inheritance Structure : : : : : : : : : : : : : 94

3.4 Feature Adaptation : : : : : : : : : : : : : : : : : : : : : : : 96
3.4.1 Renaming : : : : : : : : : : : : : : : : : : : : : : : : 96
3.4.2 Rede�ning : : : : : : : : : : : : : : : : : : : : : : : : 97
3.4.3 Anchored Declarations : : : : : : : : : : : : : : : : : 99
3.4.4 Changing the Export Status : : : : : : : : : : : : : : 100
3.4.5 Other Feature Adaptations : : : : : : : : : : : : : : 101

3.5 Polymorphism and Dynamic Binding : : : : : : : : : : : : : 102
3.5.1 Polymorphic Entities : : : : : : : : : : : : : : : : : : 102
3.5.2 Dynamic Binding : : : : : : : : : : : : : : : : : : : : 103
3.5.3 Type Conformance and Expanded Types : : : : : : 104

3.6 Deferred Classes : : : : : : : : : : : : : : : : : : : : : : : : 105
3.6.1 Deferred Routines : : : : : : : : : : : : : : : : : : : 105
3.6.2 Deferred Classes : : : : : : : : : : : : : : : : : : : : 106
3.6.3 Inheritance and Deferred Classes : : : : : : : : : : : 108
3.6.4 Deferred Classes: A Structuring Tool : : : : : : : : : 110

3.7 Genericity and Inheritance : : : : : : : : : : : : : : : : : : : 110
3.7.1 Heterogeneous Containers : : : : : : : : : : : : : : : 110
3.7.2 Constrained Genericity : : : : : : : : : : : : : : : : 112

3.8 Case Study: The KWIC System : : : : : : : : : : : : : : : 113
3.8.1 Presentation of the KWIC System : : : : : : : : : : 114
3.8.2 The KWIC Object-Oriented Software : : : : : : : : 115
3.8.3 The Class Kwic entry : : : : : : : : : : : : : : : : 116
3.8.4 The Class KWIC : : : : : : : : : : : : : : : : : : : : 117
3.8.5 The Class Words : : : : : : : : : : : : : : : : : : : 119
3.8.6 The Class Driver : : : : : : : : : : : : : : : : : : : 121

4 The Ei�el Environments 123
4.1 System Assembly and Con�guration : : : : : : : : : : : : : 123

4.1.1 Assembling Classes : : : : : : : : : : : : : : : : : : : 123
4.1.2 Generating an Application : : : : : : : : : : : : : : : 124
4.1.3 Specifying Clusters : : : : : : : : : : : : : : : : : : : 124
4.1.4 Excluding and Including Files : : : : : : : : : : : : : 125
4.1.5 Dealing with Class Name Clashes : : : : : : : : : : : 126

4.2 Assertion Monitoring : : : : : : : : : : : : : : : : : : : : : : 127
4.2.1 Rationale : : : : : : : : : : : : : : : : : : : : : : : : 127
4.2.2 Enabling Assertion Checking with LACE : : : : : : 127
4.2.3 Enabling Assertion Checking with Run-time Control

Language : : : : : : : : : : : : : : : : : : : : : : : : 129
4.3 Overview On the Ei�el Standard Library : : : : : : : : : : 129

4.3.1 Purposes of the Ei�el Standard Library : : : : : : : 129

J.-M. J�ez�equel { Object-Oriented Software Engineering with Eiffel { (c) Addison-Wesley



8 CONTENTS

4.3.2 Required Standard Classes : : : : : : : : : : : : : : 130
4.3.3 Using I/O Classes: An Example : : : : : : : : : : : 133

4.4 Interfacing with Other Languages : : : : : : : : : : : : : : : 135
4.4.1 Declaring external Routines : : : : : : : : : : : : : : 135
4.4.2 Calling External Routines : : : : : : : : : : : : : : : 136
4.4.3 The Address Operator : : : : : : : : : : : : : : : : : 138
4.4.4 Linking with External Software : : : : : : : : : : : : 138

4.5 Garbage Collection : : : : : : : : : : : : : : : : : : : : : : : 138
4.5.1 De�nition : : : : : : : : : : : : : : : : : : : : : : : : 138
4.5.2 Interest for Software Correctness : : : : : : : : : : : 139
4.5.3 The Cost of Garbage Collection : : : : : : : : : : : : 140
4.5.4 Controlling the Garbage Collector : : : : : : : : : : 141
4.5.5 Finalization : : : : : : : : : : : : : : : : : : : : : : : 142

Bibliography 143

J.-M. J�ez�equel { Object-Oriented Software Engineering with Eiffel { (c) Addison-Wesley



Preface

This is a book on software engineering the Ei�el's way.
Born in Dijon (France), Gustave Ei�el (1832{1923) graduated from the

prestigious �Ecole Centrale in Paris. He �rst worked as an engineer for
a railroad construction company before becoming the Nepveu's company
chairman and starting an o�ce of studies dedicated to metallic construc-
tion. Using light steel modular structures instead of the usual design with
cast iron, Ei�el built tall infrastructures featuring very good aerodynamic
resistance. He built several viaducts, most notably at Bordeaux (1858)
and Gabarit (1884). He also created the framework of the Bon March�e
department store (1876) in Paris. Abroad he oversaw several projects in
Austria, Switzerland, Hungary (Pest Railway Station, 1876), and Portugal
(the Maria-Pia Bridge near Porto, 1877).

His most famous structures were the framework of Bartholdi's Liberty
Statue in New York and the 300-meter Ei�el Tower, built for the 1889
universal exposition in Paris. These two world-famous landmarks were
also technological marvels for that time. They opened the way for the
new domain of industrial architecture. After 1890, Ei�el resigned from his
business to concentrate on aerodynamic studies from the top of the Ei�el
Tower. Today, more than one century after their construction, most of
Ei�el's buildings are still standing and open for business.

In the software engineering domain, Ei�el is also the name of an object-
oriented language that emphasizes the design and construction of large,
high-quality softwares by assembling reusable software components, called
classes, that serve as templates to make objects. Beyond classes (on
which modularity is based), Ei�el o�ers multiple inheritance, polymor-
phism, static typing and dynamic binding, genericity, garbage collection, a
disciplined exception mechanism, and systematic use of assertions to im-
prove software correctness in the context of programming by contract.

Software engineering encompasses much more than what a computer
language can o�er. Computer languages are just tools that software engi-
neers can use (or misuse) within a larger context. The Ei�el language is a

9



10 Preface

tool that has been specially designed in the context of software engineering.
This book describes the tool, and provides clues on how to use it.

Chapter 1 is an introduction presenting the object-oriented approach
within the context of software engineering. The main body of the book is
then divided roughly into two parts.

The �rst part of this book presents the language itself. Chapter 2
presents the basic (procedural) elements of the language: what an Ei�el
program is, what the instruction set is, and how to declare and use entities
(variables) and routines. Chapter 3 introduces the concepts underlying the
object-oriented approach: modularity, inheritance, and dynamic binding,
and illustrates them in a small case study from the management informa-
tion system domain. Ei�el programs do not exist in a void, so Chapter 4
brings in environment matters: system con�guration, interfacing with ex-
ternal software, and garbage collection. Chapter 5 closes the Ei�el presen-
tation with more advanced issues involving exception handling, repeated
inheritance, typing problems, and parallelism.

The second part of this book addresses some Ei�el software develop-
ment issues. In Chapter 6, we outline how an object-oriented software en-
gineering process may make the best use of Ei�el, concentrating on speci�c
guidelines to facilitate the translation OOAD to a maintainable Ei�el im-
plementation. This process is illustrated by a rather large case study from
the telecommunications domain. As a logical continuation of this study,
Chapter 7 addresses veri�cation and validation (V&V) issues of Ei�el soft-
ware systems built in a software engineering context. Building reusable
libraries discussed in Chapter 8, which presents three competing Ei�el data
structure libraries. Finally, Chapter 9 shows how Ei�el can be used as an
enabling technology to master a very complex problem: the building of a
parallel linear algebra library that allows an application programmer to use
distributed computing systems in a transparent way.

If you are lost at some point with the Ei�el-related vocabulary, there is
a small glossary in Appendix ?? on page ??. An Ei�el syntax summary is
presented in Appendix ?? on page ??, and a contact list closes this book
(Appendix ?? on page ??).
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Chapter 1

The Software Engineering

Context

In this chapter we introduce the context of software engineering.
Software construction and maintenance can bene�t from an object-
oriented approach. The Ei�el language, which has been designed
speci�cally along this line, is introduced.

1.1 Introduction

1.1.1 What's the big deal about programming a com-
puter?

Programming is easy. Nearly everybody can give the proper instructions to
cook a dish or to record a movie on a VCR (though a good programming
interface might be helpful). Only a handful of training hours are required
for most people to learn how to write spreadsheet or BASIC programs.
Even young children have little problem driving the Logo turtle back and
forth on the screen.

There are few concepts, however, as widely admitted as the \software
crisis." This expression was coined in the late 1960s when it appeared that
most �rst releases of software products were notoriously buggy or late on
delivery and hard to maintain. Today, the maintenance of a large software
system is usually more costly than the total development phase, with a fair
share due to bug corrections. The overall maintenance cost can even reach
three or four times the initial cost for long life products.

What does this crisis mean? Are software engineers grossly overpaid

13



14 CHAPTER 1. THE SOFTWARE ENGINEERING CONTEXT

and incapable and should they be �red in favor of teenager programmers?
This approach has been tried, but works in Hollywood movies only. As
most software engineers know, the problem is actually twofold. At the
micro level (also called programming in the small), we face the problem of
designing and implementing correct algorithms. This activity is much like
theorem proving because its complexity is of a mathematical nature. Still,
it may be mastered by a single person who understands everything from top
to bottom. At the macro level (also called programming in the large), we
face the structural complexity of systems made of hundred of thousands or
millions of lines of code and developed by large teams of programmers. This
complexity management problem is not at all speci�c to software systems
but is ampli�ed by the well-known software \softness."

1.1.2 Programming in the small

The strange thing about computer science is that it has been invented ex
nihilo to demonstrate an impossibility result in mathematics. Alan Turing
built his famous mathematical model known as the Turing machine to prove
that some properties can be undecidable (e.g., stopping the machine). An
immediate and painful consequence is that computer programs cannot be
proved correct in general, because every (general purpose) programming
language is formally equivalent to a Turing machine. This may seem a
remote problem arising only in very complicated cases. Consider, however,
the following program, presented in [35]:

input a positive number n

while n is not equal to 1 do

if n is even then n := n/2

else n := 3*n+1

end

print "Terminated"
If you are not familiar
with computer science

foundations, you
should try to craft a

proof to get some
insight into its

mathematical aspects.

Can you formally prove that this program terminates for all positive
input values?

Since the emergence of structured programming [7] in the late 1960s,
the recommended way of dealing with this kind of problem has been to
build software in such a way that it can be formally proved [9]. In spite
of all the e�ort expended since then, proving techniques cannot be applied
practically to real programs, because the complexity of the proof may be
much greater than the program itself (and who is going to check the proof
anyway?).

What is left is a general method of software production [35] that as-
sociates partly formal correctness arguments (called assertions) with the

J.-M. J�ez�equel { Object-Oriented Software Engineering with Eiffel { (c) Addison-Wesley



1.1. INTRODUCTION 15

1. Initial The software process is characterized as ad hoc, and occasionally
even chaotic. Few processes are de�ned, and success depends on individual
e�ort.

2. Repeatable Basic project management processes are established to track
cost, schedule, and functionality. The necessary process discipline is in
place to repeat earlier successes on projects with similar applications.

3. De�ned The software process for both management and engineering activ-
ities is documented, standardized, and integrated into a standard software
process for the organization. All projects use an approved, tailored version
of the organization's standard software process for developing and main-
taining software.

4. Managed Detailed measures of the software process and product quality
are collected. Both the software process and products are quantitatively
understood and controlled.

5. Optimized Continuous process improvement is enabled by quantitative
feedback from the process and from piloting innovative ideas and technolo-
gies.

Table 1.1: The SEI/CMM Levels

programs as they are being built. This method enables the construction of
robust software modules, which can then be reused safely.

The problem of software correctness takes on a new dimension when
parallelism is brought in. The complexity brought along by parallelism and
its associated asynchronism is orthogonal to sequential complexity. Even Such a programming

language has a fairly
low power indeed: you
can't even count items
with an FSA.

when you restrict your programming language to have the power of a �nite
state automaton (FSA), once you put two FSA's to work in parallel and
connect them through unbounded �rst in, �rst out (FIFO) channels, you
may obtain the power of a Turing machine. Thus, even for very simple ex-
amples (two FSA's with no more than three states each in [20]), you may get
in�nitely complex behaviors. Here again, reusing carefully designed parallel
software components appears to be a promising avenue toward mastering
the inherent complexity of parallel systems.

1.1.3 Programming in the large

The size of software projects has increased by several orders of magni-
tudes since the 1960s to become widely out of the grasp of a single program-
mer. Software development is now a cooperative process. This problem is
usually tackled along two di�erent lines. On the one hand, the tools used

J.-M. J�ez�equel { Object-Oriented Software Engineering with Eiffel { (c) Addison-Wesley



16 CHAPTER 1. THE SOFTWARE ENGINEERING CONTEXT

to develop software (programming languages and environments) are contin-
uously improving to support this scale of complexity. On the other hand,
a great deal of e�ort is devoted to improve the process by which software
is developed. The best results are obtained when the tools and the process
�t together well.

Some e�ort has been devoted to adapting the notion of Total Qual-
ity Management associated with manufacturing processes to the software
industry. For instance, the ISO 9000-3 standard is an adaptation to the
software world of the ISO 9001 general standard on quality assurance in
the industry. Other examples of this trend are the variants of the ISO 9001
standard in the militaries of several countries, or the levels (Table 1.1) de-
�ned by the Software Engineering Institute (SEI) in its capability maturity
model (CMM), a process-based quality management model for assessing
the level of an organization's software development [17].

In this context the software development process is considered from an
engineering point of view. It generally is divided into several subtasks,
called phases. Each phase addresses di�erent problems on the road leading
from a set of requirements to a working software system. The output from
each phase is the basis for the next. Although there is some dispute about
their names and their boundaries, there is a broad agreement on the nature
of these phases. In Europe, one popular approach is the V model, as illus-
trated in Figure 1.1 (there are several variants of the V model, such as the
waterfall model [37] most popular in the U.S. or the spiral model [4]). The
boxes represent the successive stages of a software development project,
from the initial requirements down to the executable code (through anal-
ysis, design, and implementation), and then up to an operational system
(through testing, integration and delivery). The dashed lines connecting
the right-hand side boxes to the left-hand side boxes suggest a match be-
tween the requirements of the descending stages and the results of ascending
stages. This V model is itself the �rst phase in the life-cycle of most large
software systems, which usually endow several years of maintenance (both
corrective and evolutive).

The study of this kind of process led to a new branch of computer
science: software development methodology. This branch is the study of
methods for designing and implementing software in a rational way. As with
any other scienti�c domain, the increased complexity of a large system has
been dealt with modularity, or a mechanism to break down problems to a
manageable size.

A major breakthrough was made with the introduction of structured
design [34, 36], which follows the spirit of structured programming and
top-down functional design [44]. The structured-design family of methods
provides a rational, systematic, and teachable process to go e�ciently from

J.-M. J�ez�equel { Object-Oriented Software Engineering with Eiffel { (c) Addison-Wesley
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Requirements

Specification

Architecture

Operational system

Tested subsystems

Tested system

Code

Analysis

Design

Implementation Unit testing

Integration

Delivery

Figure 1.1: Phases of Software Development in the V Model

a well-de�ned functional speci�cation to a working implementation. How-
ever, for large real systems, software speci�cations are usually imprecise,
ambiguous, unclear, and much more subject to change than for other arti-
facts, because of the widely held belief in software \softness." When you
build a house, you have to make up your mind about the disposition of the
walls before putting on the roof. Is it possible for software systems to be
relieved of that kind of constraint?

Jackson [19] showed that the main 
aw of structured-design techniques
is that they neglect this softness aspect of software construction. Because This is not to speak of

reusing software
components, which lies
completely out of the
scope of these
approaches.

each module is produced to meet a precise sub-requirement, no provision is
made for future evolutions, nor for dealing with potential analysis or design

aws. On the premise that entities are more stable than functions, Jack-
son's system development (JSD) method recommends that the programmer
start the speci�cation of a system with the elaboration of a \real-world"
model representing the stable part of the system. This model is made of
entities performing or su�ering actions, the temporal pattern of which is
precisely de�ned. Functionality speci�cations are added to this model at
a later stage. This approach makes JSD a clear winner in terms of main-
tenance savings, but JSD su�ers from a lack of structure and too much
fuzziness.

Another popular approach, also based on modeling, consists of build-
ing entity relationship models of the problem domain [6]. The family of

J.-M. J�ez�equel { Object-Oriented Software Engineering with Eiffel { (c) Addison-Wesley



18 CHAPTER 1. THE SOFTWARE ENGINEERING CONTEXT

methods that relies on this approach strongly emphasizes data and their
organization. It is then very well suited to a relational database type of
application, but may not �t so well with other problem domains.

Once the idea of analyzing a system through modeling has been ac-
cepted, there is little surprise that the object-oriented approach is brought
in, because its roots lie in Simula-67, a language for simulation designed in
the late 1960s, and simulation basically relies on modeling.

1.2 The Object-Oriented Approach

1.2.1 Origin

The object-oriented paradigm evolved from a set of concepts already present
in computer science in the early 70s:

� Classes of objects used to simulate real-world application. In Simula-
67 [8], an execution of a computer program is organized as a combined
execution of a collection of objects. Objects sharing common behav-
iors are said to constitute a class.

� Protected resources in operating systems. Hoare [16] proposed the
idea of using an enclosed area as a software unit and introduced the
concept of amonitor, which is concerned with process synchronization
and contention for resources among processes.

� Units of knowledge called frames, are used for knowledge represen-
tation. Minsky [31] proposed the notion of frames to capture the
idea that a behavior goes with the entity whose behavior is being
described. Thus, a frame can also be represented as an object.

� Data abstraction in programming languages such as CLU [12], which
refers to a programming style in which instances of abstract data types
(ADTs) are manipulated by operations that are exclusively encapsu-
lated within a protected region.

1.2.2 De�nitions in the Context of Software Engineer-
ing

Whereas the approaches described in Section 1.2.1 led to several paradigms
in various computer science �elds, the notions of object, class, function, and
inheritance take a particular meaning in the context of software engineering.
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Objects A computer science theoretician would de�ne an object as the
transitive closure of a function. More concretely, an object is anEven more concretely,

an object takes up
space in a computer
memory, and has an

associated address like
a record in Ada,

Pascal, or C. The
arrangement of bits in

an object's memory
space determines that

object's state.

encapsulation of some state together with a de�ned set of operations
on that state.

An object embodies an abstraction characterized by an entity in the
real world. Hence, it exists in time, it may have a changeable state,
and it can be created and destroyed. An object has an identity (which
is a distinguishing characteristic of an object) that denotes a separate
existence from other objects. The object's behavior characterizes how
an object acts and reacts in terms of changes in its state. In fact, each
object could be viewed as a computer endowed with a memory and a
central processing unit (CPU), and could provide a set of services.

Classes A class is a template description that speci�es properties and
behaviors for a set of similar objects. From the point of view of a
strongly typed language, a class is a construct for implementing a
user-de�ned type. The term object is

sometimes used to
refer to both class and
instance, especially
with languages like
Smalltalk where a
class is itself an
object.

Every object is an instance of only one class. A class may have no in-
stances (usually termed an abstract or deferred class). Every class has
a name and a body that de�nes the set of attributes and operations
possessed by its instances. It is important to distinguish between an
object and its class. In this book the term class is used to identify
a category of objects and is a compile-time notion, whereas the term
object is used to mean an instance of a class and exists at run time
only.

Features Features of an object are either attributes or routines. They are
part of the de�nition of classes. Attributes are named properties of an
object and hold abstract states of each object. Routines characterize Attributes also may be

viewed as
parameterless
functions.

the behavior of an object, which is expressible in terms of the oper-
ations meaningful to that object. The routines are the only means
for modifying the attributes of an object, hence the encapsulation
properties of an object.

An object may invoke routines or read the attributes that are part
of another object's interface. Consider for example a radio set. Its
interface is made of:

� Buttons allowing you to select between AM and FM,

� A frequency selector,

� A display showing the current radio station.
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Usually, you don't need to know how the radio set is built to use it.
The same should hold for software objects.

Inheritance The inheritance mechanism can be used to represent a rela-
tionship between classes. Every inheritance relationship has parents
called the super-classes and children called the sub-classes, and at-
tributes and routines inherited. Inheritance allows the de�nition and
implementation of a new class by combination and specialization of
existing ones. It is a mechanism for sharing commonalities (in terms
of attributes and routines) between these classes, thus allowing clas-
si�cation, subtyping and reuse.

1.2.3 Object-Oriented Analysis and Design

Object-Oriented analysis and design (OOAD) methods subsume the best
ideas found in previous methods. They still �t quite well in the V model,
even if the software development process in most of these methods does
not proceed linearly but swings back and forth between phases (seamless
development). Numerous OOAD methods have been documented in the
literature. A 1992 survey article by D. E. Monarchi and G. I. Puhr [32]
mentions more than 20 OOAD techniques. Let's try to highlight their
common rationale.More details on

OOAD will be given in
the second part of this
book, in Section ??.

The �rst step toward an object-oriented analysis is concerned with de-
vising a precise, relevant, concise, understandable, and correct model of the
real world. The purpose of object-oriented analysis is to model the problem
domain so that it can be understood and serve as a stable basis in preparing
the design step.

Object-oriented analysis is a method of analysis that examines
requirements from the perspective of the classes and objects
found in the vocabulary of the domain. (G. Booch)

The design phase starts with the output of the analysis phase and grad-
ually shifts its emphasis from the application domain to the computation
domain: the implementation strategy is de�ned, and trade-o�s are made
accordingly. Auxiliary classes may be introduced at this stage to deal with
complex relationships or implementation-related matters. The output of
the object-oriented design phase is a blueprint for the implementation in
an object-oriented language, which is basically an extension of the design
process.

Again the boundary between design and implementation is not rigid.
This seamlessness of the object-oriented approach may upset the old-time
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programmers who favor the well-established structured methods that fea-
ture strong frontiers between phases. A reality check might be necessary
here: how often does a �nal product match its initial requirements? What
is the situation 5 or 10 years later? Using the same conceptual frame- See B. W. Boehm and

W. Humphrey's works
[3, 17] for more
thoughts on this topic.

work (based on objects) during the whole software life cycle (from analysis
to implementation, testing, delivery, and maintenance) yields considerable
bene�ts in terms of 
exibility and traceability. These properties translate
to better quality software systems (fewer defects and delays) that are much
easier to maintain because a requirement shift usually may be traced easily
down to the (object-oriented) code (see for example [40]).

1.3 Ei�el: An Object-Oriented Language

for Software Engineering

1.3.1 A Software Engineering Tool

A good programming language is one that helps programmers
write good programs. No programming language will prevent its
users from writing bad programs (Kees Koster).

As a software engineering tool, a computer language must address both
issues of

� Fostering a rigorous approach based on formal assertions when pro-
gramming in the small,

� Providing support for managing the structural complexity of pro-
gramming in the large.

The Ei�el language has been designed speci�cally to meet these require-
ments. It is based on the principles of object-oriented design, and achieves
a careful balance between the use of sophisticated concepts and overall sim-
plicity, consistent minimalism, and pragmatism. It brings object-oriented
design and programming closer together. It emphasizes the design and con-
struction of large, high-quality software by assembling reusable software
components made of classes.

Beyond classes (on which modularity is based), Ei�el o�ers multiple
inheritance, polymorphism, static typing and dynamic binding, generic-
ity, and a disciplined exception mechanism, and fosters a systematic use
of assertions to improve software correctness in the context of design by
contract.

Ei�el provides a consistent framework that fosters the design and imple-
mentation of software components that feature the following quality factors:
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� Correctness is the ability of components to perform their tasks ex-
actly, as de�ned by the requirements and speci�cations. Assertions
available in Ei�el are elements of formal speci�cations that character-
ize the semantics of classes and their features independently of their
implementation. They provide a reference against which correctness
can be checked.

� Reusability allows software components to be used as building
blocks for future software developments. Taking components created
by others rather than creating new ones from scratch. The savings are
not so much expected in the initial development phase (a good cut-
and-paste editor could be as e�cient) as in the testing, integration,
and above all, maintenance phases of the software life-cycle. Inheri-
tance plays a major role in increasing software reusability by allowing
components to be customized.

� Extensibility permits new functionalities to be added easily with
little modi�cation to existing software systems. With this property,
software systems can be extended easily to meet new requirements.
This incremental development also relies on the inheritance mecha-
nism. It is a fundamental part of object-oriented thinking.

� Compatibility is the ease with which software components may be
combined and assembled to build useful programs. The Ei�el ap-
proach to building software can rely on the mere notion of assembling
software components. All components are orthogonal: the concept
of \main program" (or entry point) does not require special syntax,
therefore a class that contains the \main program" for one system
may be an ordinary class in some other system.

� Robustness is the ability of software components to function even
in abnormal conditions. This ability boils down to avoiding catas-
trophic behavior when things go awry. Ei�el disciplined exception
mechanisms play an important role in improving robustness.

� Testability is the ease of preparing validation suites for software
components. In Ei�el, testability relies on the underlying paradigm
of programming by contract.

� E�ciency is the good use of resources (e.g., processor or memory), to
make good trade-o�s among various strategies. The clean semantics of
Ei�el enable sophisticated compiler optimizations that help produce
e�cient components.
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� Portability is the ability to port software components across various
software and hardware environments. It is often at odds with the
notion of e�ciency, but sometimes (as described in the case study of
Section ??) they can be reconciled.

� Friendliness is the ease of learning how to use software components.
Good, up-to-date documentation as provided by Ei�el assertions and
bound comments is of great help here.

1.3.2 Importance of a Language

Language shapes the way we think, and determines what we can
think about. (B. Stroustrup)

Some people still think that the technical di�erences between program-
ming languages are irrelevant: a good design can accommodate any lan-
guage. Clearly they are both right and wrong. Granted, a loop looks more
or less the same whatever the language; and any design could be imple-
mented with any language (remember, all languages are equivalent to a
Turing machine). Few people still take seriously the old argument that
method is everything, tools are nothing. If this was the case, we might as
well still be writing everything in assembler. Languages are important as
tools to best support the modeling paradigm. Where there are mismatches
between the modeling paradigm and the tools, there must be manual trans-
lation by programmers. This is a costly and error-prone business [21].

Object-oriented languages are close to the design concepts used to deal
with ever-evolving software systems. In the context of software engineering,
Ei�el is one of the most consistent and well-designed object-oriented lan-
guages on the market. It is de�nitively not a \universal" language (e.g., for
small, one-shot programs, simpler languages may be more appropriate) nor
the \ultimate" language (there will be life after Ei�el). It provides the right
paradigms to address the construction of large, long-lived object-oriented
software systems while staying quite easy to master, though, so Ei�el is
probably an important stage in the history of language evolution.

1.3.3 An Ei�el Overview

Ei�el is a pure object-oriented language: objects are the only things that
can be manipulated at run time. It is not a superset or extension of any
other language, although it retains the main lexical and syntactical con-
ventions found in the ALGOL family of languages. Ei�el strongly fosters
object-oriented programming and allows the programmer to avoid danger-
ous pitfalls from previous-generation languages. Still, Ei�el is an open
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language that does interface easily with other languages such as C or FOR-
TRAN.

Software texts in Ei�el are made of autonomous software units called
classes. An executable software product (a system) is obtained by assem-
bling a combination of one or more classes, one of which is called the root
of the system.

A class de�nes a type, and is also the modularization unit. It describes
a number of potential run-time objects, called its instances. A class is
characterized by its features. A feature is either an attribute (present in
each instance of the class) or a routine (describing a computation applicable
to each instance of the class). A routine is either a function if it returns a
result, or a procedure otherwise. A routine may have formal arguments; if
so, calls to the routines must include the corresponding actual arguments
(which are expressions having a type conforming to the formal argument).Value semantics are

also available to deal
with simple objects
like integers and

characters.

An entity is a name in a class text. It is either an attribute of a class,
a local variable or a formal argument of a routine, or the prede�ned entity
result holding a function result. An entity stands for a value at run time.
This value is normally a reference to an actual object, or may be Void.

Ei�el assertions are used for writing correct and robust software, de-
bugging it, and documenting it automatically. Assertions include routine
preconditions (which must be satis�ed when the routine is called), routine
postconditions (guaranteed to be true at the end of the routine), and class
invariants (global consistency conditions applying to every instance of a
class). Disciplined exception handling is used to recover gracefully from
abnormal cases.

Ei�el classes may be generic, i.e., they may have a formal generic param-
eter such as T in List[T]. The class may use any type (class) as a generic pa-
rameter, thus making a 
exible container structure such as List[Integer]
or List[Any Useful Class] easily available.

Ei�el classes may be structured in an inheritance hierarchy. Multiple
inheritance is available with a set of mechanisms to manage it (renam-
ing, selection, rede�nition, unde�nition, and repeated inheritance). Strict
static typing is used for improving safety in a software system and dynamic
binding is used for 
exibility.

Entities may reference any object with a type that conforms to their
declared type (hence their polymorphic nature). Dynamic binding of fea-
tures to entities then ensures that the feature most directly adapted to the
actual target object is selected.
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1.3.4 Status of the Ei�el Language

Ei�el was created by Bertrand Meyer and developed by his company, In-
teractive Software Engineering Inc. (ISE) of Goleta, CA.

The de�nition of the Ei�el language [30] is in the public domain. This
de�nition is controlled by the Nonpro�t International Consortium for Ei�el
(NICE). Thus, anyone or any company may create a compiler or interpreter NICE directions are

given in Appendix ??

on page ??.
having to do with Ei�el. NICE reserves the right to validate that any such
tool conforms to the current de�nition of the Ei�el language before it can
be distributed with the Ei�el trademark. (e.g., advertised as an \Ei�el"
compiler).

There are at least four Ei�el compilers (see Appendix ?? on page ??).
These compilers should be compatible to a large extend now that NICE has
published The Ei�el Standard Library Vintage 95 (described in Section 4.3).
Note that various versions of these compilers are available for free (see
Appendix ?? on page ??).
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Chapter 2

Basic Language Elements

of Ei�el

The basic constructions of the Ei�el language are the system, the
class and its components, the imperative instruction set, and the as-
sertions.

2.1 The Ei�el Notion of Systems

2.1.1 System and Program

Ei�el is a language that focuses on software components, not on programs.
The class is the top construct of the Ei�el grammar. The notion of program
found in most computer languages is downplayed in Ei�el.

Building programs with Ei�el consists of assembling on-the-shelf and
ad hoc software components, or classes. For that you have to tell the
compiler (or another Ei�el environment tool, such as an interpreter) where
the relevant classes are, that a particular class among them is the \root"
of the Ei�el program, and that this program entry point |like the main()
function in C| is a particular creation routine of the root class. ACE �les are

described in depth in
Section 4.1.1 on page
123.

The exact way of doing this assembly depends on your Ei�el environ-
ment. It could be through command-line arguments. Most probably it is
through a con�guration �le, called an Assembly of Classes in Ei�el (ACE).
An ACE �le is remotely related to the well-known make�le found in Unix
or C environments, the main di�erence is that you don't have to deal with
dependency rules nor imperative instructions. An ACE �le only contains
information on the root class of a system, the executable(s) name, the com-
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pilation options, and where to �nd the other classes needed by the system.
In Ei�el, it is the job of the compiler to determine dependencies and to
decide everything about the compilation and linking process.

2.1.2 \Hello, world!"

``Hello, world'' is the unavoidable example of one of the smallest Ei�el
programs. The class listed in Example 2.1 describes objects that are onlyA creation procedure

corresponds to the
class constructor in

the C++ terminology.

able to print \Hello, world" when they are created. The feature make is
declared to be a creation procedure; i.e., make is called to create a Hello
object.

Example 2.1

�� A simple "Hello world" example

class HELLO
creation

make 5

feature

make is

�� class entry point
do

print("Hello world!%N") 10

end

end �� HELLO

%N is the new line
character, equivalent
to the nn found in C. Once the Ei�el system with Hello as its root class and make as its

entry point has been compiled to an executable program called hello, it
can be run as any other program.

The execution model of Ei�el is very simple: when a program is run, a
single instance of the root class (here Hello) is created (the root object),
and the speci�ed creation procedure is called. A creation procedure can
be designed to create other objects (which may themselves create other
objects). and do real work with them. In our simple example, the cre-
ation procedure prints the expected \Hello world" message and exits. The
program then �nishes.
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2.2 Class = Module = Type

2.2.1 Foundation Principles

There is a magic number: seven plus or minus two. This refers
to the number of concepts that we humans can keep in mind at
any one time. (H. A. Miller)

The fewer the number of concepts in a programming language, the easier
it is to learn it and to understand programs written with it. In Smalltalk,
for example, everything is an object; this brings conceptual simplicity and
frees space in the programmer's mind to let him or her concentrate on useful
things.

The Ei�el way of liberating our minds is through the uni�cation of the
notions of module and type in the language construct called class. Then an
object is just an instance of a class, just as you are an instance of the homo
sapiens sapiens species. Simpli�cations often occurs at the cost of some
limitations or more complexity somewhere else. In Smalltalk, \everything
is an object" leads to a complex structure of meta-classes [13, 5]. Some
consequences of the Ei�el uni�cation are discussed in Section ??.

Both notions of type and module existed for years, but Ei�el was the
�rst computer language in which they were fully uni�ed. Still, like a Janus
statue, a class has two faces. Let's explore them separately.

2.2.2 The Class as a Module

Modularity helps engineers (and others) manage the complexity of systems.
The principle of modularity is the key to support modi�ability, reusability,
extensibility, and understandability. A module is characterized by a well-
de�ned interface and by information hiding. An interface should be small
and simple in order for modules to be as loosely coupled as possible.

Modularity rapidly made its way into computer science through the no-
tion of subroutine (procedure). The next step was to consider coarser grain
modularity. At the program unit level, a set of data and procedures are
encapsulated in a programming module, which can be compiled separately.
This idea is already present in C, where a module is just a �le. Information hiding is

implemented in C with
the \static"
declaration occurring
for a variable or a
function: it makes this
variable or function
private to the �le.

The next step was to make the notion of module part of the language.
This is achieved in Modula-2 [45] (hence the name) and Ada83 [18]. In
Modula-2, modules are split into speci�cation (interface) and implemen-
tation parts. Each of these module components is compiled separately.
Data types and procedures may be speci�ed in the interface of the module
without revealing their representation details. These are provided in the
implementation part of the module. Any other module can only have access
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to the interface of the module. In Ada a module is called a \package." It
is essentially the same notion as that of Modula-2's, including a separate
interface speci�cation.

The Ei�el notion of class evolved from these notions of modules. You
cannot de�ne various types, however, but just one, which is identi�ed to
the class itself. As a consequence, the interface of an Ei�el class, although
not described separately from the implementation part, still exists concep-
tually. An Ei�el class may even have several interfaces. This property is
called subjectivity: the way you see a class depends on who you are (this is
explained in depth in Section 3.1.4).

Producing interface speci�cations of Ei�el classes is usually done by a
tool present in most Ei�el environments. Usually called short, this tool
eliminates the need to maintain the consistency between the interface spec-
i�cation and the module implementation, and still retains the bene�ts of
having an interface speci�cation without implementation details.

2.2.3 The Class as a Type

The notion of user-de�nable data type was already present in the ALGOL
family of languages [33], and has not evolved much since then. Formally, a
type characterizes:

� A domain of values,

� A set of operations applicable to objects of the named type.

In a typed language, objects of a given type may take only those values
that are appropriate to the type, and the only operations that may be
applied to an object are those that are de�ned for its type. A typing error
results when one of these conditions is violated.

Depending on the moment when this typing error is detected, we can
classify languages into three categories:

� Untyped (or loosely) typed language. A typing error may remain
undetected until after run time. The usual error message is \Bus
Error. Core Dump" (your mileage may vary).

� Dynamically typed language. The typing error is detected at run
time, and in Smalltalk it can result in the well-known \Message not
understood" error message (meaning an operation has been invoked
on an object that didn't de�ne it).

� Statically typed language. A program is rejected by the compiler as
soon as it may contain a typing error. Ei�el is such a language. When
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a typing error is detected, the usual (compile time) error message is
\Operation xxx not de�ned on object yyy."

Each approach has pros and cons. To be brief, untyped languages are
useful for low-level system programming or as target languages for a com-
piler, but 20 years of large software developments with C have demonstrated
the limitations of this kind of languages.

Dynamic typing has made its way into software prototyping and inter-
active systems, and more generally into environments where the product is
short-lived or requires very rapid turnaround. In such a context, where the
software must be as soft as possible, static type checking tools are thought
to be too cumbersome, whereas dynamically typed languages give the pro-
grammer the freedom needed to get things working very quickly, and to
make changes at a rapid pace.

Finally, static type checking is a must if the product is supposed to have
a long and active life (e.g., requires continuous upgrading, or serves as the
source of many spin-o� products), or if the software correctness is a prime
concern|if only to save money in detecting defaults earlier in the software
life cycle.

The Ei�el notion of class is actually based on the notion of abstract data
type (ADT), a type in which the allowed operations have associated formal
properties de�ning their semantics [25, 14]. The Ei�el language constructs
corresponding to these formal property speci�cations are the assertions,
taken from the ADT theory. Assertions will be described in more detail
in Section 2.5.3 on page 57, but it was necessary to introduce them here,
because they belong to the Ei�el notion of type. They play a major role in
constraining subtyping through inheritance, so assertions should belong to
every object-oriented language notion of type (as has been proved in [27]).

2.2.4 Components of a Class Declaration

Notation for Describing Ei�el Syntax

There are several ways to formally present the syntax of a programming
language. The Backus-Naur form (BNF) is the most concise, but not the
most readable. Thus, we present Ei�el's form with syntax diagrams that
are essentially graphical representations of the BNF. Syntax diagrams are
read from left to right. The lines may loop back on themselves, indicating
that a construct may be repeated. A circle or ellipse denotes a literal string
that appears exactly as stated. A rectangle surrounds a construct that is
de�ned in another syntax diagram (this construct is called nonterminal).
A full set of Ei�el syntax diagrams is provided for reference in appendix ??.
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Syntax Diagram 1: The class declaration

The syntax diagram 1 describes the syntactical components of a class
declaration. It is made of the following parts:

Indexing clause, for documentation and indexing purposes. The usage
of the indexing clause is described in Section ?? on page ??. Until
then, you may consider this clause as a structured comment.

Class header, which allows regular, deferred, or expanded classes. De-
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ferred classes are presented in Section 3.6 on page 105. Expanded
classes are discussed along with the notion of entity in Section 2.3 on
page 37.

Class name, which is also the module name and the type name.

Generic clause, made of a list of formal generic parameters between
brackets. This clause makes it possible to build classes with parame-
ters (see Section 3.2 on page 86).

Obsolete clause, which if present denotes that this class is to be elimi-
nated from the library in future releases. More details are given in
Section ?? on page ??.

Inherit clause, which allows you to specify how this class inherits from
other ones (see Section 3.3 on page 90).

Creation clause, which speci�es which routines may be called on creation
of an instance of this class (see Section 3.1.1 on page 74).

Feature clauses, which describes the class features (attributes and rou-
tines) grouped by exportation sets (see Section 3.1 on page 73).

Invariant, which speci�es the class invariants (see section 2.5.3 on page
57).

The minimal class declaration in Ei�el is made of the keywords class and
end separated with the class name; all other clauses are optional. The class
Book in example 2.2 re
ects the Ei�el syntax more concretely. This class,
which encapsulates a book description (basically a title, a list of authors,
and an inventory number) is used in the case study of Section 3.8.

The Ei�el notion of class encompasses both notions of ADT implemen-
tation and module; that is, a program unit. In this chapter, we concentrate
on the latter aspect of a class to present what is often called the imperative
part of Ei�el, just considering one program unit (i.e., an isolated class),
without generic, obsolete, or inherit clauses.

Lexical Components

On the lexical level, despite some unusual features (multi-line strings, ex-
pected comments, use of the % symbol as an escape character,see Ap-
pendix ??) Ei�el mostly conforms to usual ways of doing things in other
software engineering-oriented languages. Ei�el is case-independent, and However, notation

conventions exist. See
Section ??.

follows the usual conventions for the syntax of identi�ers. As in Ada, com-
ments are introduced with a double dash ({ {) and end at the end of the
line.
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Example 2.2

class BOOK
creation

make
feature

title : STRING 5

authors : STRING
inventory : INTEGER
make (new title, new authors:STRING; new inventory:INTEGER) is

�� make a new book record
require 10

title non void: new title == Void

authors non void: new authors == Void

do

title := new title
authors := new authors 15

inventory := new inventory
end �� make

print description is

do

print(title); print(", by ") 20

print(authors); print(" (")
print(inventory); print(")%N")

end �� print description
end �� BOOK

Manifest Constants and Basic Types

A manifest constant is a literal value present in the text of the class. It has
a type, deduced from the lexical structure, e.g., Boolean, Character,
Integer, Real, Bit sequence, String, and Array.

Usual conventions also apply here: True and False are the only
Boolean constants, an ASCII character enclosed in single quotes (e.g.,
'a') denotes a Character constant, 42 is an Integer constant, and a se-
quence of character values enclosed in double quotes (e.g., \Hello, world")
is a String constant.

Full details on the syntax for all manifest constants are given in ap-
pendix ?? on page ??.

A type is nothing but a class, so manifest constants are just constant
instances of their classes (sometimes called basic types). Conversely, these
classes are nothing special further than being able to have literal instances
(which implies that they must be known by the compiler, which may then
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make several optimizations with them, but this is another story). Along
with a set of other Ei�el classes, these basic types must also be the same
(or at least compatible) regardless of the Ei�el compiler; this is why they
are sometimes called kernel library classes.

2.3 De�nition of Entity Declaration

2.3.1 Entity Declaration

At run time, only objects exist. An entity is a language-level notion that
allows the programmer to designate objects. The notion of entity encom-
passes the usual notions of variable, formal parameter, and result value
found in most languages. Ei�el is a strongly typed language, so every en-
tity used in an Ei�el program must be declared, or associated to a type.
As in Pascal or Ada, an ALGOL-like syntax is used to declare entities (see
Syntax Diagram 2).

EntityDeclarationGroup

Identi�er�
� ,

�


�
	

�
�

:
�


�
	Type

Syntax Diagram 2: Entity declarations

In Example 2.3 an entity title is declared to be of type String, and the
entity n is declared to be of type Integer.

Example 2.3

title : STRING
n : INTEGER

2.3.2 Entity Expansion Status
Ei�el expanded
entities correspond to
C++ value objects or
to Smalltalk
immediate objects.

An entity may either refer to an object, or directly hold it, depending on
whether its type is a reference class (e.g., Integer ref) or an expanded
class (e.g., Integer), as illustrated in Figure 2.1. For both cases in this
example, print(e) would display 547.
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ff32 547

@ff32

e { e {

e : INTEGER

547

e : INTEGER_REF

(e handles an expanded object)

e : expanded INTEGER_REF

(e handles an object reference)

or

Figure 2.1: Reference vs. expanded objects

Whereas the natural semantics for entities are based on the notion of
reference to an object, sometimes the expanded semantics may make more
sense. This is the case when dealing with such basic notions of integer or
real numbers, or when real-world modeling suggests it (a person has one
head, not a reference to a potentially shared head). The choice of value
vs. reference objects is simply a design decision based on the model one is
trying to build.

An object may indeed have several entities referring to it, whereas an
expanded object is just the run-time value of an entity. Basic data typesOn the contrary, C

basic types such as int
still exist in C++ as a

separate notion,
unrelated to the class
notion. This is why
C++ is sometimes

referred to as a hybrid
language, whereas

Ei�el or Smalltalk are
called pure

object-oriented
languages.

such as Boolean, Integer, Real, Double, and Character are just the
expanded forms of Boolean ref, : : :Character ref and are nothing
special with respect to the type system. The only thing that makes this set
of classes (along with the classes String and Array) somehow special is
the possibility of declaring manifest constants of these types in a program
text.

2.3.3 Constant Entities

A constant entity is tied to a given object. Its value does not change at run
Thus it does not need
to be physically stored

with the instance.

time, and is the same for all instances of a class. The syntax of a constant
entity declaration is presented in Syntax Diagram 3.

The constant entity may be tied to a manifest constant as described
in Section ??. Example 2.4 presents a set of constant entity declarations.
Bit16 and Bit8 are conceptually di�erent classes (as for any n in Bitn).
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ConstantEntityDecl

identi�er�
� ,

�


�
	

�
�

:
�


�
	ClassName is

�



�
	Constant

Constant

ManifestConstant�
� ConstantAttribute

�
�

Syntax Diagram 3: Constant entity declaration

Example 2.4

i : INTEGER is 3
a negative number : INTEGER is �864322
a huge number : INTEGER is 3789641370
PI : DOUBLE is 3.14159265453
message : STRING is "This is a message string" 5

mask : BIT16 is 0101000011110101B
BCD13 : BIT8 is 00010011B

Unique Constants
This is related to in
Pascal or Ada or
enum in C.

Sometimes the actual value of an integer constant is not really important
to the programmer: the only important thing is that each constant in a
set has a unique value. To let the compiler choose a code for an integer
constant, one may declare it as unique (Syntax Diagram 4).

UniqueDecl

identi�er�
� ,

�


�
	

�
�

:
�


�
	INTEGER
�



�
	is
�



�
	unique
�



�
	

Syntax Diagram 4: Unique constant declaration

In Example 2.5, the value of a unique constant such asRed is a positive
integer. If two unique constants are introduced in the same class their
values are guaranteed to be di�erent. Furthermore, if they are declared to
be in the same clause (as Red, Green, and Blue in our example), these
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Example 2.5

Red, Green, Blue : INTEGER is unique

Yellow : INTEGER is unique

constants will have consecutive values.
Unique constants may seem more primitive than the usual enumerated

types found in procedural languages. However, in these languages the main
use for the enumerated types is to help implement variant records or to allow
clever set operations. Both concepts are superseded by object-oriented
techniques: inheritance and the use of sets of anything (instead of sets of
enumerated data). Still, unique constants are useful when dealing with
error codes, or �nite state machine state encoding.

Other Constant Declaration

The last way to declare constants is through the use of once functions
(described in Section 2.5.6 on page 62). Once functions allow for computed
constants, and also for constants with types that cannot be expressed with
the manifest constants.

2.3.4 Default Initialization Rule for Entities

The value of an entity is always de�ned in Ei�el. The initial value of an
entity depends on its type, according to the rule described in Table 2.1 (the
value Void denotes an empty reference).

Entity type Initial value

Boolean false
Character '%U' (NUL)
Integer 0
Real 0.0
Double 0.0
reference to class A Void
expanded class A All attributes of A initialized to

their default values

Table 2.1: Default initialization rule for entities
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2.4 Statements

There are relatively few instructions in Ei�el. In this respect, it is almost
minimal. All classic constructs usually found in an imperative language
still exist in Ei�el, but in one instance only (e.g., there is no chance to
choose among various loop constructs).

Ei�el instructions include the object creation, the assignment, the fea-
ture call, the sequence, the conditional, the multi-branch choice, and the
loop. Also available are the debug instruction (to include optional debug-
ging code) and the check instruction to check an assertion at any point in
the code.

2.4.1 Assignment
For now, consider that
type conformance is
type equality. Its exact
de�nition is given in
Section 3.3.3 on page
92.

The assignment instruction allows a new value to be given to a variable
provided the value type conforms to the variable one (Syntax Diagram 5).

Assignment

Writable :=
�



�
	Expression

Syntax Diagram 5: Assignment syntax

This assignment
syntax is the same as
in Pascal, Ada, or
Modula-2.

This assignment syntax is typical of the ALGOL family of languages.
Consider the following assignment:

target := source

The exact e�ect of this instruction depends on whether the target and
the source are expanded objects or references.

� If the target is an expanded type, then the source object is copied into
the target (Figures 2.2 and 2.3. On this set of �gures, the rectangles
represent the source and target contents). However, if the source
is Void the assignment will fail. When something fails in an Ei�el
program, an exception is triggered (see Section ?? on page ??).

� If the target is a reference, and Two entities are said
to be aliased if their
values are references
to the same object.

{ If the source is a reference, this reference is copied to the target,
and thus both target and source refer to the source object after
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BEFORE AFTER

target := source

source

target

source

target

Figure 2.2: Assigning an expanded object to an expanded entity

BEFORE AFTER

target := source

source

target

source

target

Figure 2.3: Assigning a reference object to an expanded entity

BEFORE AFTER

target := source

source

target

source

target

Figure 2.4: Assigning a reference object to a reference entity

BEFORE AFTER

target := source

source

target

source

target

Figure 2.5: Assigning an expanded object to a reference entity
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the assignment (this is sometimes called aliasing). See Figure 2.4
for an example.

{ If the source is an expanded object, it is cloned to a twin object,
and the target then refers to this twin as illustrated in Figure 2.5.

You never need to
worry about memory
management issues
with Ei�el unless you
really insist on doing
so.

In both cases where the source is a reference object, it may become
unreachable (lost) after the assignment instruction. In Ei�el, it is the task
of the garbage collector to recycle this kind of unreachable memory. Sec-
tion 4.5 gives more detail on how it works.

A variant of the Assignment instruction, is called the Assignment At-
tempt (denoted ?=). It is described in Section ?? on page ?? in the
discussion on type conformance.

2.4.2 Testing for Equality

Related to assignment is the test for equality, which exists in three 
avors
in Ei�el:

� a = b tests whether a and b refer to the same object (reference equal-
ity). If both are expanded entities, it tests for the equality of their
values.

� equal(a,b) tests whether a and b are identical objects, that is all their
�elds ai and bi are such that ai = bi. For expanded entities, equal(a,b)
has the same meaning as a = b.

� deep equal(a,b) tests whether a and b have equal values if they are
expanded entities, or refer to isomorphic object structures; that is,
all their �elds ai and bi are deep equal(ai; bi).

2.4.3 Sequence

Compound

�
� Instruction�
� ;

�


�
	

�
�

�
�

Syntax Diagram 6: The compound instruction

The sequence is the control structure denoting that a set of instructions
(called a compound instruction) must be executed sequentially, in their
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textual order. As illustrated in Syntax Diagram 6, the semicolon (;) is
optional, and an empty sequence is a valid instruction.

2.4.4 Conditional

Conditional control structures allow the selection of one of a number of
alternative sequences of statements, depending on the value of some condi-
tion. The syntax of an if statement is presented in Syntax Diagram 7.

Conditional

if
�



�
	 BooleanExpression then

�



�
	Compound�

� elseif
�



�
	

�
�
�

��
��
� else
�



�
	Compound

�
�

end
�



�
	

Syntax Diagram 7: The conditional

This Ei�el conditional
statement is very
similar to Ada's,

except that elseif is
used instead of elsif.

Example 2.6

if last read value = 0 then

print ("zero%N")
elseif last read value > 0 then

print ("positive%N")
else 5

print ("negative%N")
end

This statement works as follows. The �rst condition is evaluated:

� If True then the �rst compound is executed and the 
ow of control
passes to the instruction following the end clause.

� If False then the next condition is evaluated, and so on until the last
condition;

� If all the conditions have been evaluated to False, then the compound
following the else clause is executed (if it exists).
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2.4.5 Multi-branch Choice

Like the if statement, the multi-branch choice statement selects one from
many alternative sequences of statements (its syntax is described in Syntax
Diagram 8).

MultiBranch

inspect
�



�
	Expression �

� WhenPartList

�
�
�

��
��
� else
�



�
	Compound

�
�

end
�



�
	

WhenPartList

when
�



�
	�
� Constant�
� Interval

�
�

�

� ,
�


�
	

�

�

�
�

then
�



�
	Compound�

�

�

�

Syntax Diagram 8: The Multi-branch choice

This selection is in the
spirit of Pascal case
or C switch
constructs, and has
exactly the same
semantics as the Ada
case statement: Ada's
) becomes Ei�el's
then, and when

others becomes else.

The selection, however, is based on the value of the expression following
the inspect clause (inspect expression). This value must be of the same type
as the possible constant values listed in the clauses, where only Integer
and Character constants (or intervals) are allowed.

These alternatives must be exhaustive and mutually exclusive. An else
clause (as in the if statement) is available as a last alternative to cover
all values not given in previous when clauses. Several alternatives may be
declared for the same when clause, either by enumeration (alternatives are
separated with a comma) or by range of values (the bounds of which are
given and separated with two points \.."; see Syntax Diagram 9) or any
combination of both.

The e�ect of this statement is that the compound associated with the
clause matching the inspect expression is executed and the control is then
passed to the instruction following the end clause.

The multi-branch choice may be the only redundant Ei�el statement.
The if statement can always be used instead. The multi-branch choice was
not present in earlier versions of the language, because in procedural lan-
guages such as C or Ada, the multi-branch choice statement is mainly used
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IntegerInterval

IntegerConstant ..
�



�
	 IntegerConstant

CharacterInterval

CharacterConstant ..
�



�
	CharacterConstant

Syntax Diagram 9: Integer and Character interval syntax

Example 2.7

inspect lastchar
when 'a'..'z' then

print ("lowercase letter")
when 'A'..'Z' then 5

print ("uppercase letter")
when '0'..'9' then

print ("digit")
when '+','-','*','/', then
print ("operator") 10

else

print ("other character")
end

to select pieces of code related to variants of a data type (union in C, variant
records in Pascal or Ada). This usage has proved to hamper modi�ability
(see for example [29]) because each time a component is added or removed
to the variant record, every multi-branch choice dealing with the associated
data structure must be changed. Object-oriented languages provide a much
better solution to this problem through the use of inheritance (to replace
variant records) and dynamic binding (to automatically select the relevant
piece of code, see Section 3.5.2 on page 103).

The multi-branch choice was included in Ei�el to alleviate the syntax
of dealing with input data (as in Example 2.7) while allowing the compiler
to produce more e�cient code.

As a general guideline, the inspect statement should be used mainly to
discriminate among input data. Using it in another context could be an
indication that the style is not really object oriented.
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2.4.6 Iterative Control: The Loop

Iterative computation is a programming technique based on the repetitive
application of the same processing. It is a fundamental concept of computer
science that has been in computer languages from the beginning (in the form
of a goto to a label).

Loop

from
�



�
	Compound �

��
� until
�



�
	BooleanExpression �

��
� loop
�



�
	Compound end

�



�
	

Syntax Diagram 10: The basic syntax of the Ei�el loop construct

An iteration is made of three main parts:

1. The initialization part, to establish the initial state of the loop. In
Ei�el, it is the compound following the keyword from;

2. The termination condition, or the Boolean expression specifying when
the loop is considered �nished. In Ei�el, the termination condition
follows the keyword until;

3. The body of the loop; e.g., both the processing to be performed at
each iteration and the progression code to advance toward the veri�-
cation of the termination condition. In Ei�el, the body of the loop is
the compound following the keyword loop and terminated with the
keyword end.

In Example 2.8, we compute the quotient of a number n by a divisor
(this operation is also known as an integer division). Provided n and divisor
are positive integers, the result of this function must satisfy:

Result� divisor � n < (Result+ 1)� divisor (2.1)

The idea of this loop is to count how many times the divisor can be sub-
tracted from n. The variable remainder is initialized to n, whereas Result
is set to 0 through the default initialization rules presented in Table 2.1 on
page 40. If the termination condition (remainder < divisor) does not hold,
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then the loop body is executed (remainder becomes remainder minus divi-
sor and Result becomes Result + 1). This loop body execution is repeated
until the remainder eventually becomes smaller than the divisor.

Example 2.8

from remainder := n
until remainder < divisor
loop

remainder := remainder � divisor
Result := Result + 1 5

end ��loop

The same thing holds
for recursion, which

has the same
expressive power as

the loop.

The loop is a powerful construct. Imagine building programs without
loops: you just lack expressive power. The drawback of the loop construct
is that it is too powerful: once you have the (unbounded) loop in a language,
you get the power of the Turing machine. That is, there are programs that
you cannot prove correct (see the example in the introduction).

The computer science answer to this problem is to design each loop in
such a way that it can be proved correct. Ei�el helps you to follow this line,
by means of the notion of loop variants and invariants.

2.4.7 Designing Correct Loops with Loop Assertions

The Notion of a Loop Invariant

A loop invariant characterizes what the loop is trying to achieve, without
describing how [10]. It is a Boolean expression that must be true on ini-
tialization of the loop variables, maintained with each iteration of the loop,
and held to be true at the termination of the loop. For example, a loop
invariant in Example 2.8 might be: n = Result � divisor + remainder.
In Ei�el, the loop invariant is an assertion that may be speci�ed after the
keyword invariant (see Syntax Diagram 12). The assertion itself is either
a comment or a run-time checkable Boolean expression that may be tagged
with an identi�er. The assertion syntax is presented in Syntax Diagram 11.

Assertions checked at run time have their uses for debugging and testing,
but the real value of writing down such assertions is as an aid to human
thinking and reasoning about programs. It should bring you to the stage
where you can see how in principle the software might be proved to calculate
what it claims. It describes properties that remain true on loop boundaries
(initial, �nal and intermediate states), so the loop invariant may be given
a role very much like the inductive hypothesis employed in a mathematical
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Assertion

�
� �
� TagMark

�
�

BooleanExpression�
� Comment

�
�

�

� ;
�


�
	

�

�

�
�

Syntax Diagram 11: Assertion syntax

induction. It thus can play an important role in deriving the loop body. A
loop invariant also can be used to reason about the correctness of a loop.
At the end of the loop of Example 2.8 we have both:

invariant: n = Result� divisor + remainder

and

termination condition: remainder < divisor;

which trivially implies the inequality 2.1. Thus, if we reach the end of the
loop, then the result will be the one we wanted. This property is called
partial correctness. Let us see how to prove total correctness.

The Notion of a Loop Variant

Total correctness is just partial correctness and the proof that the loop
terminates (i.e., the termination condition eventually will hold). The idea
of a loop variant is to characterize how each iteration can bring the loop
closer to its termination.

A loop variant is a non-negative integer expression that is decreased
by at least one at each iteration. By de�nition, it cannot go below zero,
thus the number of iterations of a loop with a variant is bounded and then
the loop eventually terminates. A suitable variant for the Example 2.8
is remainder. It is a strictly decreasing function that takes non-negative
values only.

A loop variant has been found, so we have proved that the loop even-
tually terminates. This proof completes the partial correctness to give the
total correctness of the loop. In other words, the loop terminates and com-
putes the right result. In Ei�el, the loop variant may be speci�ed after the
keyword variant, as a tagged integer expression. See the full syntax of the
Ei�el loop construct in the Syntax Diagram 12.
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Loop

from
�



�
	Compound �

��
��
� invariant
�



�
	Assertion

�
�
�

��
��
� variant
�



�
	�
� TagMark

�
�

Expression

�
�
�

��
� until
�



�
	BooleanExpression �

��
� loop
�



�
	Compound end

�



�
	

Syntax Diagram 12: The full syntax of the Ei�el loop construct

So, with loop variant and invariant, Example 2.8 becomes the loop of
Example 2.9.

Example 2.9

from remainder := n
invariant reversible: n = Result*divisor+remainder
variant decreasing remainder: remainder
until remainder < divisor
loop 5

remainder := remainder � divisor
Result := Result + 1

end ��loop

Sometimes, you cannot express the loop invariant with the Ei�el asser-
tion expressive power. Still, write it in a comment. It gives your readers the
intent of what you are trying to achieve with the loop. Consider for exam-
ple the problem of computing the factorial of a number n (Example 2.10).
The loop invariant (Result = i!) describes what the iteration has computed
so far, but can only be expressed as a comment.
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Example 2.10

from i := 1; Result := 1
invariant Result is factorial i: �� Result = i!
variant increasing i: n�i
until i = n
loop 5

i := i + 1
Result := Result * i

end

Designing Bug-free Loops

Ei�el fosters the systematic design of bug-free loops (but cannot force you
to do so). Here is the method:

1. Design the loop invariant. It should provide a concise and preferably
formal description of the properties of the loop.

2. Find the termination condition.

3. Find the variant (how the loop can advance toward its termination).

4. Write the body of the loop:

� First deduce from the variant the progression instruction,

� Then write the code corresponding to the restoration of the in-
variant.

5. Write the initialization part to set up the loop invariant.

For simple cases, steps 1 and 3 can be omitted. Still, it is a good prac-
tice to stick to the order described (termination, loop body, initialization).
Example 2.9 is such a simple case, because it involves a bounded loop (i.e.,
the number of iterations is always n, and thus is bounded). There is no
di�culty in proving that the loop terminates.

Let us exercise our systematic design method for bug-free loops with a
more complex example: a binary search. Let it be an array of integers sorted
in increasing order. The feature item(i) gives the value of the integer stored
at position i. The �rst position in the array is lower, and the last is upper.
The array is sorted means: 8i 2 [lower; upper � 1] item(i) � item(i+ 1).

The problem is to �nd whether an integer x belongs to the array. The
algorithm chosen is the binary search. Its principle is to compare x with // is the integer

division
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the median element m of the array, that is, item ((lower + upper) //
2).

� If they are equal, we have found x (hence we set Result to True).

� If x is smaller than m, then we have to look for it in the lower part
of the array (with the same method).

� If x is greater than m, then we have to look for it in the upper part
of the array (with the same method).

To apply the �ve-step method to solve this problem in a systematic and
repeatable way:

1. First, �nd the loop invariant. Let l and u be the lower and upper
indexes delimiting the section of the array where we look for x at
a given iteration. If x belongs to the array, then x lies in between
item(l) and item(u), which by contraposition gives

(x < item(l) or x > item(u)) => Result = False)

as loop invariant.

2. The termination condition is either that x does not belong to the
array (l > u) or that x has been found (Result = True).

3. The variant is u� l: the range where x is supposed to be shrinks more
and more.

4. The body of the loop is:

� Make the loop progress. Let m = (l + u)==2. If x < item(m)
then u := m� 1 else if x > item(m) then l := m+ 1

� Reestablish the invariant. If x = item(m), Result := True

5. Set up the invariant in the initialization. l := lower and u := upper.

The code presented in Example 2.11 directly follows from this loop
design.

Finally, don't worry about the performance penalties of evaluating such
assertions. As with other Ei�el assertions, their evaluation can be disabled
with a kind of switch at compile or at run time.
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Example 2.11

from

l := lower; u := upper
invariant

in bounds: (x<item(l) or x>item(u)) implies Result = False

variant 5

range must shrink: u � l
until l>u or Result

loop

m := (l + u) == 2
if x < item(m) then 10

�� x cannot be in the upper part
u := m�1

elseif x > item(m) then
�� x cannot be in the lower part
l := m+1 15

else �� x = item(m)
Result := True

end �� if
end �� loop

Check

check
�



�
	Assertion end

�



�
	

Syntax Diagram 13: The syntax of the check statement

2.4.8 The Check Statement

The check statement allows you to check that a set of assertions are veri�ed
at a given point in a program. Its syntax is described in Syntax Diagram 13.

In addition to reassuring yourself that certain properties are satis�ed,
the check statement is another convenient way to make the assumptions on
which you are relying explicit for your readers.

Actual code is generated for the check statement only if you activate
the relevant switch at compile time. As with other constructs involving
assertions, an exception is generated on violation of an assertion. What
happens then is described in Section ?? on page ??.
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2.4.9 The Debug Statement
In C (or C++) the
debug statement is

often realized though
the preprocessor:

#ifdef DEBUG

...

#endif.

The debug statement enables the conditional execution of a compound
statement, depending on a compilation option. The debug keyword may be
followed by a list of manifest strings called debug keys (Syntax Diagram 14).

Debug

debug
�



�
	�
� (
�


�
	�
� DebugKey�
� ,

�


�
	

�
�

�
�

)
�


�
	

�
�

Compound end
�



�
	

Syntax Diagram 14: The syntax of the debug statement

The debug code is executed if one of the debug keys has been selected (all
keys also can be enabled at once). Depending on your Ei�el environment,
this selection may be done either at compile time or at run time. See
Section 4.2 on page 127 for more details. In this example, the message

Example 2.12

debug ("TRACE","LEVEL3")
print ("Entering the interesting part %N")

end

will be printed only if either TRACE or LEVEL3 debug keys are activated.

2.5 Routines: Procedures and Functions

As seen in Section 2.2.4, the features of a class are either attributes describ-
ing data �elds or routines describing computations that are applicable to
instances of that class. Routines may access or update attributes of theirEi�el routines are

called methods in
Smalltalk or member
functions in C++.

class. A routine returning a result is called a function; otherwise, it is called
a procedure. However, Ei�el fosters a style of design that clearly separates
commands, implemented as procedures, from queries implemented as pure
functions|that is, functions without side e�ects (see Section ??).
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2.5.1 Routine Declaration

FeatureDeclaration

�
� frozen
�
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��
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�
	EntityDeclarationList )
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�
� :
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�
	Type
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� is
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	Routine

�
�

Routine

�
� Obsolete

�
�
�
� HeaderComment

�
�
�

��
��
� Precondition

�
�
�
� LocalDeclarations
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��
� RoutineBody �
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��
� Postcondition
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� Rescue

�
�
�

��
� end
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RoutineBody

Internal�
� External

� Deferred

�
�
�

Internal

do
�



�
	�

� once
�



�
	

�
�

Compound

Syntax Diagram 15: Feature declaration

A routine declaration consists of an interface speci�cation and its body

J.-M. J�ez�equel { Object-Oriented Software Engineering with Eiffel { (c) Addison-Wesley



56 CHAPTER 2. BASIC LANGUAGE ELEMENTS OF EIFFEL

(see Syntax Diagram 15). The interface speci�cation re
ects the abstract
data type view of a routine, or signature and preconditions and postcondi-
tions. The body may be either:

external: the implementation of this routine falls out of the scope of the
Ei�el compiler. More details on interfacing Ei�el with foreign software
are given in Section 4.4.1 on page 135.

deferred: no implementation is given for this routine. Deferred routines
are presented in Section 3.6 on page 105.

regular: the description of the computations the routine performs.

The routine may have synonyms, i.e., various feature names may be
attached to the same feature body. This is actually equivalent to multiple
independent de�nitions with the same interface and body.Ei�el uses the

convention opposite to
C++. By default

Ei�el routines may be
rede�ned in subclasses
(frozen prevents this),

whereas a C++
routine may be
rede�ned only if

declared virtual in the
base class.

The keyword frozen means that the associated feature name cannot be
rede�ned in subclasses (see Section 3.4.2 on page 97).

2.5.2 Arguments to a Routine

An argument allows the routine caller to pass it information for a given
execution. Within the routine, an argument is represented with a purely
local name associated with a type and bears the name formal argument.

FormalArguments

(
�


�
	�
� Identi�er�
� ,

�


�
	

�
�

:
�


�
	Type�

� ;
�


�
	

�

�

�
�

)
�


�
	

Syntax Diagram 16: Formal arguments syntax

Consider the binary search presented in Section 2.4.6 on page 47. It
makes sense to encapsulate it within a function returning a Boolean result.
Let's call this function contains. The corresponding declaration is then:

contains (x : INTEGER) : BOOLEAN is ...

The formal argument x is then used in the body of the routine as an entity
denoting the element to look for (see Example 2.11). The signature of this
routine is made of its name (contains), the type of input parameters (here
Integer), and the type of output result (here Boolean).
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2.5.3 Preconditions, Postconditions, and Invariants
The syntax of
assertions is described
in Syntax Diagram 11
on page 49.

Like other assertions, preconditions, postconditions, and class invariants
express the speci�cation of software components, and are essential for doc-
umenting and testing them. A detailed introduction to the formal aspects
of these assertions can be found in [10]. As a speci�cation tool, Ei�el pre-
conditions and postconditions try to ful�ll the goal of specifying the what
rather than the how. Thus even when assertions not easily speci�able with
Boolean expressions (for example when quanti�ers would be needed), you
should still try to describe them through comments.

Preconditions

A precondition is introduced with the keyword require (see Syntax Dia-
gram 17), and states the conditions under which the routine may be called.
The routine caller must guarantee this condition when calling the routine,
or else the routine work cannot be done. More formally, a precondition is
a predicate that characterizes the set of initial states for which a problem
can be solved. It speci�es the subset of all possible states that the routine
should be able to handle correctly. The keyword else is

used in conjunction
with the mechanism of
rede�nition described
in Section 3.4.2.Precondition

require
�



�
	�
� else
�



�
	

�
�

Assertion

Syntax Diagram 17: Precondition syntax

For example, a precondition should be used to specify that a quotient
may be computed for non negative integers and positive divisors only (see
Example 2.13).

Example 2.13

quotient(n,divisor:INTEGER):INTEGER is

�� Integer division of n by divisor
require

non negative n: n >= 0
positive divisor: divisor > 0 5
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Postconditions

A postcondition is introduced with the keyword ensure and appears just
before the end of the routine (see Syntax Diagram 18). The postcondition
states the property that the routine must guarantee at completion of any
correct call. It provides a formal speci�cation of what the routine should
accomplish. It thus can assist in the construction of the routine, and be
used as a constructive proof of its correctness.The keyword then is

used in conjunction
with the mechanism of
rede�nition described

in section 3.4.2. Postcondition

ensure
�



�
	�
� then
�



�
	

�
�

Assertion

Syntax Diagram 18: Postcondition syntax

In the case of the quotient function, the function speci�cation (as de-
scribed in Inequality 2.1) readily translates itself to the function postcon-
dition. Putting all parts together, the speci�cation of the quotient function
becomes what is presented in Example 2.14.

Example 2.14

quotient(n,divisor:INTEGER):INTEGER is

�� Integer division of n by divisor
require

non negative n: n >= 0
positive divisor: divisor > 0 5

ensure

Result*divisor <= n and n < (Result+1)*divisor
end �� quotient

An \old" expression is a special notation (see Syntax Diagram 19) avail-
able in postconditions only. The value of an old expression is the value
the expression had before entering the routine. It appears in the routine
postcondition, so it allows the speci�cation of the e�ect of the computation
with respect to the previous state. Consider for example the speci�cation
of a routine to swap two elements of an array (Example 2.15). Its postcon-
dition states that the value at index i is now the value that was at index j
on entering the routine, and conversely.
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Old

old
�



�
	Expression

Syntax Diagram 19: Old expression

Example 2.15

swap (i, j: INTEGER) is
�� swap item(i) and item(j)

require

valid i: i>=lower and i<=upper
valid j: j>=lower and j<=upper 5

ensure

item(i) = old item(j) and item(j) = old item(i)
end �� swap

Invariants

Class invariants do not syntactically belong to a given routine. They actu-
ally characterize properties that the enclosing module must respect at any
time. This relationship has a consequence for routines, because the class
invariant must be true both on entering a routine (thus strengthening its
precondition) and on exiting it (thus strengthening its postcondition).

Assertions and Programming by Contract

Assertions ful�ll a crucial role in supporting a clear separation of responsi-
bilities in a modular system. They foster the formalization of the contract
binding a routine caller (the client) and the routine implementation (the
contractor or supplier).

Provided the client calls the contractor routine in a state in
which the class invariant and the precondition of the routine are
respected, the contractor promises that when the routine returns,
the work speci�ed in the postcondition will be done, and the class
invariant will be respected.

If either party fails to meet the contract terms, the whole program
should be considered invalid. In other words, there is a bug somewhere.
The section on exception handling (Section ?? on page ??) explains what
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happens next, and how Ei�el programming environments help to identify
both the faulty party and the fault itself. The contract can actually be
broken in two di�erent ways:

� If the precondition was violated, then the client broke the contract.
Its code should have been written to avoid this. The contractor should
not try to comply with its part of the contract, but should signal the
fault by raising an exception.

� If the precondition was satis�ed but the postcondition was violated,
the implementation of the routine did not ful�ll its promises, which
is commonly referred as an implementation bug.

The design by contract approach provides a methodological guideline
to build robust, yet modular and simple systems without resorting to de-
fensive programming. It has a sound theoretical basis in relation to partial
functions (see reference [29]). It is not surprising then that the notion of
contractual programming is a cornerstone in the design of reusable software
components in Ei�el. This approach could be emulated partially in C or
C++ with the \assert.h" package. The Ei�el assertion mechanism is, how-
ever, much more powerful because it is fully integrated to the type system
and the inheritance mechanism, and thus provides the necessary semantics
for subtyping and subclassing. This mechanism will be described in full
detail in Section 3.4.2 on page 97.

2.5.4 Calling a Routine

The only syntactical di�erence between a function and a procedure is that
the function yields a result. Calling a function without argument presents
no syntactic di�erence with the reading of an attribute: the caller does not
need to know whether a given function is implemented with an attribute.
The transmission of values between the caller and the callee consists ofThe semantics of this

assignment are
described in

Section 2.4.1.

assigning the actual arguments provided by the caller to the formal argu-
ments of the routine. For example, calling q := quotient(10; 3) is equivalent
to setting n := 10 and divisor := 3 within the function quotient, executing
the rest of the routine, and assigning its result to q.

2.5.5 Internal Routine Body
A local declaration

clause is equivalent to
the variable and

constant declarations
that are local to a

procedure or function
in C, Pascal, or Ada.

A routine body may have a local declaration clause that allows the decla-
ration of entities available within the routine body only. The name of these
local entities may not override the feature names of the enclosing module.
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LocalDeclarations

local
�
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� Identi�er�
� ,

�


�
	

�
�

:
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	Type�

� ;
�


�
	

�

�

�
�

Syntax Diagram 20: Local declaration clause in an internal routine body

Example 2.16

local

i, j : INTEGER
is empty : BOOLEAN
total : REAL

The syntax of a local declaration clause is presented in Syntax Dia-
gram 20.

Functions have an additional local entity (denoted with the reserved
word Result) that holds the result returned by the function. All the local
entities (including Result for a function) are always initialized according
to the default initialization rules for their type (see Section 2.3.4). Local
entities are destroyed when the routine �nishes:

� Expanded objects just vanish (are popped from the stack),

� Reference objects become unreachable (if they are not attached to
non-local entities) and thus become fair game for the garbage collec-
tor.

Note that you never need to worry about memory management issues with
Ei�el unless you really insist on doing so (See Section 4.5).

The executable part of a routine normally is introduced with the key-
word do. It consists of a compound statement followed by an optional
rescue clause, which allows it to deal with the exceptions that might have
been raised in the compound (see Section ?? on page ??). Example 2.17
presents the full de�nition of the quotient function.
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Example 2.17

quotient(n,divisor:INTEGER):INTEGER is

�� Integer division of n by divisor
require

non negative n: n >= 0
positive divisor: divisor > 0 5

local

remainder : INTEGER
do

from remainder := n
invariant reversible: n = Result*divisor+remainder 10

variant decreasing remainder: remainder
until remainder < divisor
loop

remainder := remainder � divisor
Result := Result + 1 15

end ��loop
ensure

Result*divisor <= n and n < (Result+1)*divisor
end �� quotient

2.5.6 Once Routines

Once routines are special routines. They have the same syntax, except for
the keyword once used instead of do to introduce the compound statement.
The �rst time the routine is called, it works exactly like a regular routine.
Subsequent calls, however, have no e�ect. If the once routine is a function,
the value it returns is the same as the value returned by the �rst call. This
mechanism enables:

� The initialization of a data structure without an explicit initialization
requirement,

� The sharing of values that are computed at run time,This is equivalent to
the notion of class
variable found in
Smalltalk or C++

� The sharing of variables among all instances of a class.

2.5.7 Pre�x and In�x Function Declaration

To enable the usual practice of writing boolean and numerical expressions
(such as -2*x), two alternative forms of function declarations are provided:
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� The pre�x form for unary operators (functions without argument),
the syntax of which is described in Syntax Diagram 21. Prede�ned
unary operators include: not, +, -.

functionDeclPre�x

prefix
�



�
	"
�


�
	 Unary�
� FreeOperator

�
�

"
�


�
	:
�


�
	Type �

� is
�



�
	Routine

�
�

Syntax Diagram 21: Pre�x operator declaration

� The in�x form for binary operators (functions with exactly one ar-
gument), the syntax of which is described in Syntax Diagram 22.
Prede�ned binary operators are listed in Syntax Diagram 23.

functionDeclIn�x
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� frozen
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�
	Routine

�
�

Syntax Diagram 22: In�x operator declaration

Free operators are sequences of non blank characters beginning with
either @, #, j, or & .

In the Ei�el standard library class Boolean, we can �nd the decla-
ration of the pre�x function not giving the negation of a Boolean value
(Example 2.18). We also can �nd in this class the usual in�x operators
to manipulate Boolean values (Example 2.19). The operator and then is These operators have

the same semantics as
the && and jj found
in C and C++.

called semistrict because it evaluates its second argument only if the �rst
one is True. In the same way, the operator or else evaluates its second
argument only if the �rst one is False.

These notations allow for the usual way of describing a Boolean expres-
sion; e.g., not (a or b) implies c or else d.

J.-M. J�ez�equel { Object-Oriented Software Engineering with Eiffel { (c) Addison-Wesley



64 CHAPTER 2. BASIC LANGUAGE ELEMENTS OF EIFFEL

Binary
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Syntax Diagram 23: Binary operator list

Example 2.18

pre�x "not" : BOOLEAN
�� Negation.

Pre�x and in�x declarations (for arithmetic and comparison operators)
are also available in Ei�el standard library classes such as Integer, Real,
and Double. Calling such pre�x and in�x functions involves writing ex-
pressions with the usual ALGOL like syntax found in Pascal or Ada:

a := - b^2 * (c + d)

if a <= e // 2 then ...
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Example 2.19

in�x "and" (other: BOOLEAN): BOOLEAN
�� Boolean conjunction with `other'

in�x "and then" (other: BOOLEAN): BOOLEAN
�� Boolean semi strict conjunction with `other'

in�x "implies" (other: BOOLEAN): BOOLEAN 5

�� Boolean implication of `other'
in�x "or" (other: BOOLEAN): BOOLEAN

�� Boolean disjunction with `other'
in�x "or else" (other: BOOLEAN): BOOLEAN

�� Boolean semi strict disjunction with `other' 10

in�x "xor" (other: BOOLEAN): BOOLEAN
�� Boolean exclusive or with `other'

2.5.8 Recursion

Recursion is a powerful programming technique that fosters elegant solu-
tions for several problems. The concept of recursivity is the same in Ei�el
as it is in Ada, Pascal, or C. The explicit preconditions and postconditions
associated with a recursive routine, however, make it easier to produce cor-
rect implementations. A routine is said to be recursive if its body makes
reference to itself, either directly or indirectly through other routines that
call it.

Recursion is analogous to mathematical induction. The solution of a
problem pm is formulated supposing that each problem pn�1, pn�2; : : : ; p1
is solved.

Consider the factorial function again. Another mathematical de�nition
for it is:

8n 2 [1::1[ n! = n � (n� 1)! ; 0! = 1

The corresponding algorithm directly follows (Example 2.20).

A more interesting example is the recursive version of the binary search
presented in Example 2.11. The loop invariant of this example readily
transforms itself in to the recursive routine postcondition: (low > up) )
Result = False. The recursivity progresses by reducing the \search space":
the function belongs range calls itself recursively on a range that is smaller
than the current one. The recursivity stops when an empty range is found
(see Example 2.21).
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Example 2.20

rfacto(n : INTEGER): INTEGER is

�� the factorial of n, recursive algorithm
require non negative: n >= 0
do

if n = 0 then 5

Result := 1
else

Result := n * rfacto(n�1)
end; �� if

ensure 10

positive result: Result > 0
factorial computed : �� Result = n !

end; �� rfacto

Example 2.21

belongs range(low, high: INTEGER; x : T) : BOOLEAN is

�� whether x belongs to the range [low..high]
�� Recursive binary search algorithm in O(log(n)).

require data is sorted: is sorted
local 5

m : INTEGER
do

if low > high then �� stopping condition for the recursion
Result := false �� x not found

else 10

m := (low + high) == 2
if x < item(m) then

�� x cannot be in the upper part
Result := belongs range (low,m�1,x)

elseif x > item(m) then 15

�� x cannot be in the lower part
Result := belongs range (m+1,high,x)

else �� x = item(m)
Result := True

end �� if 20

end �� if
ensure

empty implies false: (low > high) implies not Result

end �� belongs range
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2.6 Example: Sorting Data with Ei�el

In this section we try to illustrate the Ei�el constructions presented so far
in a more substantial example.

Consider a data structure (typically an array) that is indexed on the
interval [lower,upper]. Let us �rst implement a function that indicates
whether a subrange of this array is sorted in increasing order. In the context
of programming by contract, the �rst thing that we have to design is the
contract of this function|that is, its preconditions and postconditions.
We do not know what to do if the parameters of this function are not
correct, so we should not try to do anything. Instead, we must specify
that we expect correct parameters: e.g., the subrange must be included in
the index domain of the array: [lower,upper]. This speci�cation gives the
preconditions of lines 4{5 in Example 2.22. Like most preconditions, these
are almost trivial, but nonetheless extremely useful to specify the routine
behavior and also simplify debugging, because a precondition violation will
give a precise error message. There is no explicit postcondition here.

The core of this function is a simple loop to check that the ith item is
smaller than the next item. The invariant is thus that the subrange [low
.. i-1] is sorted, and the termination condition is either that we �nd an
unordered element (such that itemi < itemi+1), or that we reach the end
of the subrange (i � high). An empty or a single element range is always
considered as sorted. Since this is clearly a bounded loop, the variant is only
helpful to double-check that we did not forget the incrementing of i within
the loop. The full text of this function then can look like Example 2.22

Conversely, consider the problem of sorting this data structure with
the quicksort algorithm invented by C.A.R. Hoare. It is remotely based
on the bubble sort algorithm, the principle of which is to consider pairs of
neighbor items, and to move the smaller before the larger. This process is
repeated until all elements are ordered. The problem with bubble sort is
that the number of comparisons it requires is proportional to the square of
the number of items being sorted (this algorithm complexity is thus denoted
O(n2)).

The quicksort algorithm, also called partition sort, is a major improve-
ment to this method. It is based on the idea that exchanges should prefer-
ably be performed over large distances to be most e�ective. The idea is to
consider the �rst item (called the pivot) and scan the array from the left
until an item i such that item(i) > item(first) is found, and from the right
until an item j such as item(j) <= item(first) is also found. Then the two
items are exchanged, and this \scan and swap" process is continued until
the two scans meet somewhere in the middle of the array (see Figure 2.6).
The �rst item is then exchanged with item(j), and we now get an array
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Example 2.22

is sorted range (low, high: INTEGER) : BOOLEAN is

�� are the objects in low .. high in (non strict) increasing order?
require

low large enough: low >= lower
high small enough: high <= upper 5

local

i: INTEGER
do

from i := low + 1; Result := True

invariant left subrange is sorted: �� [low .. i�1] is sorted 10

variant high � i + 1
until (not Result) or i >= high
loop

Result := item(i) <= item(i+1)
i := i + 1 15

end �� loop
end �� is sorted range

5

i j

first

3 2 7

swap(i,j)

174 9 11

 

Figure 2.6: The quicksort \scan and swap" process.

partitioned into a left part with items smaller than the pivot item, and
a right part with items greater than it. The same process then may be
applied (recursively) to both partitions, until every partition consists of a
single item only (and thus is sorted). The advantage of this algorithm is
that it tends to have an algorithmic complexity in O(n:log(n)), which brings
considerable performance improvement over O(n2) when sorting large data
structures.

The Ei�el implementation of this algorithm closely follows this
scheme. First, let us design the precise contract of the procedure quick-
sort range(�rst, last) taking as input the range to be sorted. There are two
possible policies: either require correct parameters (a nonempty subrange
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included in [lower,upper]) and ensure is sorted range(�rst, last) at the end
of the routine, or accept any parameters and do (and ensure) nothing in
case of incorrect parameters. As displayed in Example 2.24, we have chosen
the former option.

According to the quicksort algorithm, the body of the quicksort range
procedure is divided roughly into three parts: the partitioning loop (lines
12{29), the swapping of the �rst element (item[m]) with the pivot (line
30, calling the routine swap de�ned in Example 2.15 on page 59), and
the recursive call for both partitions if they are wider than 1 (lines 31{32).
This body is surrounded with debug instructions (lines 8{11 and 33{36) are
activated with the \Recursion" key to allow the printing of the sequence of
recursive calls to the procedure.

To design the partitioning loop, we start with the invariant de�nition
that follows from the method described:

8k 2 [first::i� 1] item(k) � item(first)

8k 2 [j + 1::last] item(k) > item(first)

Ei�el does not feature quanti�ers, so these assertions may only be expressed
with comments. However, the loop is complex enough to justify some e�ort
to allow the invariant to be actually checked at run time. We thus can
design a function to compute these assertions, and use it in the invariant
clause of the loop. Instead of building an ad hoc function, we may use The de�nition of the

function max value in
is left to the reader.

(or reuse) more general purpose functions giving the minimum and the
maximum items of a subrange of an array. These functions allow for the
de�nition of the invariant as it appears in lines 13{15 of Example 2.24.

The loop variant is that either i or j must move at each step of the
iteration, and the termination condition is that they cross themselves. The
body of the loop is a mere translation of the core of the method described,
and the initializations of i and j follow. The full text of the quicksort range
procedure is presented in Example 2.24.
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Example 2.23

min value in(low, high: INTEGER) : T is

�� the lowest element in the array for the range low..high
require

low large enough: low >= lower
high small enough: high <= upper 5

range not empty: low <= high
local

i : INTEGER
do

from i := low; Result := item(i) 10

invariant min so far: �� for all j in [low .. i], Result <= item(j)
variant increasing i: high � i
until i = high
loop

if item(i) < Result then 15

Result := item(i)
end �� if
i := i + 1

end �� loop
end �� min value in 20
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Example 2.24

quick sort range(�rst, last: INTEGER) is
�� sort elements �rst..last into increasing order
�� (quick sort algorithm)

require range not empty: �rst <= last
local 5

i,j: INTEGER
do

debug ("Recursion")
print("Entering quick_sort_range(")
print(�rst); print(','); print(last); print(")%N") 10

end �� debug
from i := �rst + 1; j := last
invariant

left lower: max value in(�rst, i�1) <= item(�rst)
right higher: (j < last) 15

implies (min value in(j+1, last) > item(�rst))
variant ends converging: j � i + 2
until i > j
loop

if item(i) <= item(�rst) then 20

i := i + 1 �� advances i rightwards
elseif item(j) > item(�rst) then

j := j � 1 �� advances j leftwards
else �� i & j have been found

swap(i,j) �� swap item(i) and item(j) 25

i := i + 1 �� next i & j
j := j � 1

end �� if
end �� loop
swap(�rst, j) �� places back the pivot 30

if �rst < j � 1 then quick sort range(�rst, j � 1) end
if j + 1 < last then quick sort range(j + 1, last) end
debug ("Recursion")

print("Exiting quick_sort_range(")
print(�rst); print(','); print(last); print(")%N") 35

end �� debug
ensure sorted: is sorted range(�rst, last)
end �� quick sort range
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Chapter 3

Object-Oriented

Elements

Until now we have worked within a single class, which was viewed as
a module. We now describe how to use the services provided by other
classes (with the example of using the class String), and conversely,
how to make services available to other classes (for that we design a
simple Listint class). We later introduce how these services may be
made generic and we show how to use a generic class Array[T] and
how to build a generic class List[T]. The inheritance relationship and
some of the consequences it has on subtyping, polymorphism, and dy-
namic binding are described. This chapter ends with a medium-sized
case study of a classic software engineering problem: the keyword-in-
context (KWIC) system.

3.1 Working with Modules

The client of a module is an object that uses the services provided by the
module. The Ei�el notion of module boils down to the class. It is simply
a box put around a number of features (attributes and routines). This box The interface

presented by a class
may depend on who is
looking at it. This is
called subjectivity.
See the selective
export clause in
Section 3.1.4.

has an interface (the client's view of the module), which is like a control
panel with a light-emitting diode displaying the value of exported attributes
and functions, and buttons allowing the user to call exported procedures.
For example, the random number generator in Figure 3.1 has a function
named last random real returning (i.e., displaying) the last random real
value computed by the random generator, and two procedures (namely
reset and next) to respectively reset the random generator and make it
compute the next random real value. The full text of this class is given in
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Example 3.8 on page 79.

RANDOM_GENERATOR

0.517365901

reset next

last_random_real

Figure 3.1: A random number generator

3.1.1 Creating Objects

Objects are created as instances of classes. Let e be an entity with the
declared type Someclass:A creation of an

expanded object is not
prohibited|it just

resets the object to its
default initial value.

� If Someclass is an expanded type (e.g., Integer), e directly holds
the value of the object, and is initialized according to the default
initialization rules presented in Section 2.3.4. Thus, no creation is
needed.

� If Someclass is a reference type (e.g., Random generator), a cre-
ation instruction is needed to dynamically allocate a new object at-
tached to e.

In the simplest form, if Someclass has no creation clause, a new in-
stance of Someclass is allocated, initialized (that is, its �elds are given
their default values), and attached to e by the means of a creation instruc-
tion made of two exclamation marks (!!) preceding the entity name (cf.
Example 3.1).

Example 3.1

local

e : SOMECLASS
do

!!e �� An object of type SOMECLASS is created,
�� initialized and attached to e 5

end

If Someclass has one or more creation features, one of them must be
called when the object is created. For example, the creation routine for the
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class Random generator is the routine reset which takes as argument a
new seed value for the generator (see example 3.8). Example 3.2 illustrates
how such an object can be created and attached to an entity. The e�ect of

Example 3.2

local

e : RANDOM GENERATOR
do

!!e.reset(123)
�� An object of type RANDOM GENERATOR is created, 5

�� initialized, attached to e, and then the
�� creation procedure reset is called on e

end

this instruction is the same as in Example 3.1; in addition, the reset routine
is immediately called on the fresh object (thus allowing it to establish the
class invariant).

The third form of the creation instruction allows you to create an object
instance of a subclass of Someclass instead of a direct instance of Some-
class (see Example 3.3). More details on subclassing appear in Section 3.3.

Example 3.3

local

e : SOMECLASS
do

!SUBCLASS!e.make(...)
�� An object of type SUBCLASS is created, 5

�� initialized, attached to e, and then the
�� creation procedure make is called on e

end

Clone, like print, is a
feature de�ned in the
class General, which
is an implicit common
ancestor to all classes.

The last way to get a new object is to clone an existing one. The function
clone is available in all classes to create a new object that is a �eld-by-�eld
copy of the original object and has the same type (see Example 3.4).

If e is Void, then f is also set to Void. There also exists a variant of
clone, called deep clone, which duplicates the entire structure referenced by
the original object (that is, deep clones all its �elds).
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Example 3.4

f := clone(e) �� now we have equal(e,f)
g := deep clone(e) �� now we have deep equal(e,g)

3.1.2 Calling Other Object Features

In the spirit of accessing �elds of a Pascal record or a C structure, the dot
notation is used to call a feature foo of an object obj (see Example 3.5).

Example 3.5

obj.foo �� calls the feature foo on the object obj

This syntax is valid for any kind of feature call, so in Example 3.5 the
feature foo also might be an attribute. Whether the object is expanded orIn C++, you would

write obj:foo for a
value object and

obj� > foo,equivalent
to (*obj).foo, for
reference objects.

not has no more in
uence on the calling syntax.

An attribute or the result of a function call are entities themselves, so
the feature calls may be cascaded as in Example 3.6. If some of the features

Example 3.6

obj.foo.bar.etc �� calls foo on obj, and then
�� bar on the result of foo, and then
�� etc on the result of bar

are in fact functions, they may have parameters. The formal syntax of such
a call chain is presented in Syntax Diagram 24.

The form of the feature call itself is the same as the unquali�ed call
de�ned in Section 2.5.4 on page 60. Actually an unquali�ed call implic-The current object is

called this in C++ or
self in Smalltalk.

itly refers to the current object (denoted Current in Ei�el) and is thus
equivalent to Current.foo (as far as assertion checking is not concerned).

To illustrate this feature call mechanism, Example 3.7 shows a fragment
of code designed to compute the mean value of a number of consecutive
pseudo random values generated by a Random generator object.

Note the distinction between the command (gen.next) asking
the generator to produce the next random number, and the query
gen.last random real(0,100), which is a pure function call. That is,
if we would call this function again with the same input parameters (and
without calling gen.next in between), we would get the same result. This
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Call

Entity �
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Syntax Diagram 24: Call chain syntax

Example 3.7

test a random generator is
local

gen : RANDOM GENERATOR
i : INTEGER
mean : REAL 5

do

!!gen.reset(1234)
from i := 1
until i > 1000
loop 10

gen.next
mean := mean + gen.last random real(0,100)
i := i + 1

end �� loop
mean := mean = 1000 15

print("Mean = "); print(mean); io.new line
end �� test a random generator

strict distinction between commands and queries is a recommended design
style in Ei�el [29] (see Section ??).

3.1.3 Attribute Protection and Information Hiding
In C++ terms, one
would say that every
routine is \public,"
whereas attributes are
read only. In
Smalltalk terms, Ei�el
has for each attribute
an associated implicit
method giving its
value.

By default all features of a class are visible (exported) to every other class.
Visible only means that another object can \see" the values of attributes
and functions, and \push" the buttons corresponding to the procedures.
Thus, an object may not modify an attribute of another object directly:
the assignment obj.attribute := value is (syntactically) illegal.
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A group of features appearing after a feature keyword can be made
private to the class if the feature keyword is followed by the export clause:
fNoneg. The default case in which no class is speci�ed after a feature
keyword is equivalent to exporting to ANY; thus, the features are made
public. Conversely, exporting to the pseudo class None allows the total
hiding of a set of features: they no longer can be directly called from
outside of the class. In Example 3.8, the features seed, aa, bb, invmaxint
and uniform are private to the class Random generator; they cannot be
directly called by any client class.

Example 3.8

indexing

description: "pseudorandom real number generator"

class RANDOM GENERATOR
creation

reset 5

feature

reset (new seed:INTEGER) is
�� Reset this random number generator with a new seed

require positive: new seed >= 0
do 10

seed := new seed
end �� reset

next is
�� advance the generator

do 15

seed := aa + seed * bb
if seed < 0 then

seed := � seed
end �� if

end �� next 20

last random real(lower,upper:REAL): REAL is

�� Return an evenly distributed random number over the
�� interval [lower, upper[.

require non empty interval: lower<upper
do 25

Result := lower + uniform * (upper�lower)
ensure

in bounds: Result >= lower and Result < upper
end �� last random real

feature fNONEg 30

seed : INTEGER
aa : INTEGER is 987654321
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bb : INTEGER is 31415821
invmaxint : REAL is

�� inverse of the largest positive integer. 35

once

Result := 1.0 = (2^(31) � 1)
end �� invmaxint

uniform : REAL is

�� Return an evenly distributed random number over [0.0, 1.0[ 40

do

Result := seed * invmaxint
ensure

normed: Result >= 0.0 and Result < 1.0
end �� uniform 45

invariant

non negative seed : seed >= 0
end �� class RANDOM GENERATOR

A client of the class Random generator is not aware of the way it is
implemented. Thus, it may make no assumptions about it: the client only
sees the interface displayed in Figure 3.1. If in the future we need to change
the Random generator implementation (which is probable considering
the weakness of its spectral properties, i.e., the mathematical measurement
of how random the number sequence is), it could be done without modifying
a single character of the client's code. The client's code then is said to
be decoupled from the actual Random generator implementation. This
property is called information hiding. It is the main bene�t of the Ei�el
class-based modularity.

3.1.4 Restricted Export and Subjectivity

As a middle term between fully private and fully public features, Ei�el
allows you to restrict the visibility of a set of features to a nominative list
of classes (and their descendants). This list may be given between brackets
after a feature keyword. In Example 3.9, the feature f is made visible to
objects of Class1 and Class2 only.

Example 3.9

feature fCLASS1, CLASS2g
f is do...end

This property is sometimes called subjectivity because the view clients
get on this kind of class depends on which client is looking [2]. Consider

J.-M. J�ez�equel { Object-Oriented Software Engineering with Eiffel { (c) Addison-Wesley



80 CHAPTER 3. OBJECT-ORIENTED ELEMENTS

for example a Coffee machine class. Its interface to normal clients is
illustrated in Figure 3.2.

COFFEE_MACHINE

inserted_money

price

is_out_of_service

insert_money

deliver_coffee

cancel

$ 0.25

$ 0.75

Figure 3.2: The normal client's view of a Coffee machine

COFFEE_MACHINE

inserted_money

price

is_out_of_service

insert_money

deliver_coffee

cancel

needs_maintenance cash

$ 0.25

$ 0.75

$11.50

Figure 3.3: The manager's view of a Coffee machine

Now consider a class Manager dealing with the supervision of cof-
fee machines. It may need to access other features of the class Cof-
fee machine, such as the amount of cash deposited within the machine, or
whether the machine requires maintenance. The class Coffee machine
then could be de�ned as shown in Example 3.10. The Manager's view
of this class is displayed in Figure 3.3.

3.1.5 Using Ei�el Strings

A module that should be available with any Ei�el implementation is the
class String. A module may be used in black-box mode by its clients (e.g.,This section also

serves as an Ei�el
string primer.

without them knowing anything about the way strings are implemented).
In the next section we \enter into the box" to show how Ei�el may be used
to design such modules.
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Example 3.10

class interface COFFEE MACHINE
feature

is out of service : BOOLEAN
price : INTEGER �� price of a cup of co�ee
inserted money : INTEGER �� amount of money currently inserted 5

insert money (amount : INTEGER) is
�� insert money in the machine. Money is in cents.

ensure

money added: inserted money = old(inserted money) + amount
deliver co�ee is 10

�� pilot the hardware to deliver a cup of co�ee
require

in service: not is out of service
paid: inserted money >= price

ensure 15

cash added: cash = old(cash) + old(inserted money)
reset money: inserted money = 0

cancel is
�� eject the money already introduced

ensure 20

reset money: inserted money = 0
feature fMANAGERg

cash : INTEGER �� amount of cash stored in the machine
needs maintenance : BOOLEAN is

�� condition upon which some maintenance is needed 25

end �� COFFEE MACHINE

Ei�el strings (made of �nite sequences of characters) are instances of
the kernel library class String (outlined in Example 3.11). A String
object is thus a regular Ei�el object. It may be created with the creation
procedure make, as in Example 3.12.

Alternatively, a String object may get its initial value from a manifest
string (Example 3.13). In that case no creation is needed, because the
manifest string already exists.

The entity s attached at runtime to an object declared to be of type
String has no reason to be the sequence of characters itself. Most probably
a String object contains information such as the actual string length and
a reference to the actual content. The content of the string can be accessed
through a set of features. The speci�cation of this feature set is presented
in Example 3.14.
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Example 3.11

class STRING
creation

make
feature

make (n: INTEGER) 5

�� Allocate space for at least `n' characters.
require

non negative size: n >= 0
ensure

empty string: count = 0 10

Example 3.12

local

s : STRING
do

!!s.make(80)

Example 3.13

local

s : STRING
do

s := "Hello World!"

Strings can be compared for equality or precedence (lexicographical or-
der) as illustrated in Example 3.15.

Other comparison operators (such as <=; >;>=;min, and max) are
also available. Beware that if s1 and s2 are declared as String, (s1 = s2)
is just testing the two entities s1 and s2 against reference equality; that is,
testing if s1 is an alias for s2.

There are three possible assignment-like operations:

1. s1 := s2 is a reference assignment s1 will be attached to the same
object as s2. This is a classic case of aliasing, which is useful when
both entities need to have access to a common underlying sequence of
characters (e.g., for message or error strings). Any aliased entity can
change the string's characters. The content of the string is shared by
all the entities referring to it.
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Example 3.14

has (c: CHARACTER) : BOOLEAN
�� Does string include c?
ensure

not found in empty: Result implies not empty
index of (c: CHARACTER; start: INTEGER) : INTEGER 5

�� Position of �rst occurrence of c at or after start; 0 if none
require

start large enough: start >= 1
start small enough: start <= count

ensure 10

non negative result: Result >= 0
at this position: Result > 0 implies item (Result) = c
�� none before: For every i in start..Result, item (i) == c
�� zero i� absent:
�� (Result = 0) = For every i in 1..count, item (i) == c 15

in�x "@",
item (i: INTEGER) : CHARACTER
�� Character at position i
require

good key: valid index (i) 20

substring index (other: STRING; start: INTEGER) : INTEGER
�� Position of �rst occurrence of other at or after start; 0 if none

Example 3.15

is equal (other: STRING) : BOOLEAN
�� Is `Current' made of the same character sequence as `other'?

require

other not void: other == void

in�x "<" (other: STRING) : BOOLEAN 5

�� Is `Current' lexicographically less than than `other'?
require

other not void: other == void

ensure

asymmetric: Result implies not (other < Current) 10

2. s1 := clone(s2) attaches to s1 a new string object that, although
consisting of identical characters, is not related to the string attached
to s2. This is useful when you want to have a private copy of the
string; i.e., one that is not subject to change by outside code.
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3. s1.copy(s2) replaces the string object attached to s1 with a copy of
s2. It has the same e�ect as the previous case, except that it allows
the reuse of an existing string's object. This is valid if and only if s2
is not Void.

The class String also has a set of features to get the string status
(Example 3.16). Also available are features to:

� Change the string contents (resize, clear, �ll blank, etc.),

� Append and prepend string representations of objects (Boolean, char-
acter, integer, real, double, string) to the current string,

� Convert the string to yield an object value (a boolean, an integer,
etc.) or to lower case or uppercase,

� Get a copy of a substring.

Example 3.16

empty : BOOLEAN
�� Is string the empty string?

count : INTEGER
�� Actual number of characters making up the string.

valid index (i: INTEGER): BOOLEAN 5

�� Is `i' within the bounds of the string?

3.1.6 Building a Linked List Class

A class may be seen as a black box. Let us \enter into the box" and show
how to build it. Consider the notion of a list of integers as it is well known
to, for example, LISP users. Basically, such a list has three features:

� The head which is the �rst element of the list (it was known as the
car in LISP),

� The tail of the list, which is also a list of integers (known as the cdr
in LISP),

� A function append, which allows the user to prepend a new head to
a list.
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We add a fourth one, the feature has to check whether a given integer
belongs to the list. Completing this class Listint with more sophisticated
features is left as an exercise to the reader. This list of integers is a recursive
data type, because the de�nition of the type involves the type itself. We
do not use the keyword expanded in the class header (see Example 3.17),
so the class Listint is a reference type and this recursive de�nition does
not pose problem.

Example 3.17

indexing

description: "Simple lisp-like linked list of integers"

class LISTINT
creation

make 5

feature

head: INTEGER
tail: LISTINT
make (new head: INTEGER; new tail: LISTINT) is

�� make a new list prepending `new head' to `new tail' 10

do

head := new head
tail := new tail

end �� make
append (new head: INTEGER): LISTINT is 15

�� return a new list with `new head' prepended to Current
do

!!Result.make(new head,Current)
end �� append

has (v : INTEGER): BOOLEAN is 20

�� does the list contain a value equal to v ?
do

Result := head.is equal(v)
or else (tail == Void and then tail.has(v))

end �� has 25

end �� LISTINT

To illustrate the use of this class Listint, Example 3.18 presents a
routine to put the values [7,5,3,2] in such a list, and Example 3.19 prints
all the list elements.

Although this list implementation will do the job, it is de�cient in several
aspects. It is unnecessarily tied to the Integer type and its interface
merely re
ects its implementation. This problems illustrate the fact that
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Example 3.18

initlist : LISTINT is

do

!!Result.make(2,Void)
Result := Result.append(3)
Result := Result.append(5) 5

Result := Result.append(7)
end �� initlist

Example 3.19

printlist(l : LISTINT) is
local

m : LISTINT
do

from m := l 5

until m = Void

loop

print(m.head); print('%N')
m := m.tail

end �� loop 10

end �� printlist

building reusable components does not come for free once you adopt the
object-oriented paradigm. Reusability must be a design goal, and enough
resources should be allocated for it. Much better designs for list-like classes
are presented in Chapter ??. Still, this simple example will serve us at
several places in the following sections.

3.2 Genericity

3.2.1 Generic Classes

Building software around implementation of abstract data types (ADTs)
such as the class Listint is the key to obtaining modular and loosely cou-
pled systems. This technique does not in itself allow the factorization of
common behavior for related ADTs (e.g., Listint and Listcharacter).
Genericity which is available in Ei�el, Ada, or CLU addresses this problem.
Genericity is the ability to de�ne modules with parameters, called genericThis corresponds to

the notion of a class
template in C++,

except that the Ei�el
genericity may be

explicitly constrained
by a type (see
Section 3.7.2).

classes in Ei�el. A generic class has formal generic parameters represent-
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ing arbitrary types. The syntax of the generic class declaration is given in
Syntax Diagram 25.

ClassDeclaration

ClassHeader �
� [
�


�
	�
� FormalGeneric�
� ,

�


�
	

�
�

�
�

]
�


�
	

�
�
�

��
� ...
�



�
	end
�



�
	�
� --
�



�
	ClassName

�
�

Syntax Diagram 25: Generic class declaration syntax

We use a French
spelling for Liste to
avoid clashing with the
class List existing in
various Ei�el
environments.

Genericity is very useful for classes that store objects (container classes).
For example, we can de�ne a generic version of the class Listint appearing
in Example 3.17 in the previous section: this generic class Liste[t] now
describes a list containing objects of a certain type. This type is the formal
generic argument that provides parameters to the class. It is denoted T in
the class text of Example 3.20.

A generic class is not directly usable (instantiable), because it is only a
class (and a type) pattern.

3.2.2 Generic Class Derivation

To derive a directly usable class from a generic one, you must provide an
actual type (i.e., an actual generic parameter) for each formal generic type
parameter of the generic class (Example 3.21).

The class Liste[Integer] has exactly the same interface as the class
Listint from Example 3.17. From a client point of view, they are totally
interchangeable.

Genericity is only meaningful in a typed language. In Ei�el, you cannot
put anything more than an integer in a Liste[Integer]. In a language
such as Smalltalk, there is no way to restrict the types of elements that a
list contains, and then genericity would serve no purpose.
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Example 3.20

indexing

description: "Simple lisp-like generic linked list"

class LISTE[T]

creation 5

make
feature

head: T
tail: LISTE[T]
make (new head: T; new tail: LISTE[T]) is 10

�� make a new list with `new head' prepended to `new tail'
do

head := new head
tail := new tail

end �� make 15

append (new head: T): LISTE[T] is
�� return a new list with `new head' prepended to Current

do

!!Result.make(new head,Current)
end �� append 20

has (v : T): BOOLEAN is

�� does the list contain an object equal to v ?
do

Result := head.is equal(v)
or else (tail == Void and then tail.has(v)) 25

end �� has
end �� LIST [T]

Example 3.21

list of integers : LISTE[INTEGER]
list of characters : LISTE[CHARACTER]
list of list of integers : LISTE[LISTE[INTEGER]]

3.2.3 A Standard Ei�el Generic Class: The Array

Ei�el arrays are �nite sequences of generic objects, accessible through inte-
ger indices in a contiguous interval. They are instances of the generic kernel
library class Array[T]. They are thus regular Ei�el objects. An extract of
the interface of the class Array[T] is presented in Example 3.22.
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Example 3.22

class interface ARRAY [T]
creation

make
feature �� Initialization

make (minindex, maxindex: INTEGER) 5

�� Make array empty if minindex > maxindex.
�� Reallocate if necessary; set all values to default.

ensure

no count: (minindex > maxindex) implies (count = 0)
count constraint: (minindex <= maxindex) implies 10

(count = maxindex � minindex + 1)
feature �� Access

frozen in�x "@", frozen item (i: INTEGER) : T
�� Entry at index i, if in index interval

require 15

good key: valid index (i)
feature �� Measurement

count : INTEGER �� Number of available indices
lower : INTEGER �� Minimum index
upper : INTEGER �� Maximum index 20

feature �� Status report
valid index (i: INTEGER) : BOOLEAN
�� Is i within the bounds of the array?

feature �� Element change
force (v: like item; i: INTEGER) 25

�� Assign item v to i�th entry.
�� Always applicable: resize the array if i falls out of
�� currently de�ned bounds; preserve existing items.

ensure

inserted: item (i) = v 30

higher count: count >= old count
frozen put (v: like item; i: INTEGER)
�� Replace i�th entry, if in index interval, by v.

require

good key: valid index (i) 35

ensure

inserted: item (i) = v
feature �� Resizing

resize (minindex, maxindex: INTEGER)
�� Rearrange array so that it can accommodate indices down to 40

�� minindex and up to maxindex. Do not lose previously entered items.
require

good indices: minindex <= maxindex
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feature �� Conversion
to c : POINTER 45

�� Address of actual sequence of values,
�� for passing to external (non�Ei�el) routines.

invariant

consistent size: count = upper � lower + 1
non negative count: count >= 0 50

end �� ARRAY [T]

An Ei�el Array is dynamic, and can be resized if necessary. This
Array class has much in common with the String class, which could
have been designed as an Array[Character] augmented with a set of
string handling features. As for the class String, an entity a attached at
run time to an object declared of type Array is not the actual sequence of
objects but an object that is likely to contain (among others) a reference to
the actual contents. Thus, the remarks on assignment-like operations for
strings (page 82) also hold for arrays.

3.3 Inheritance

3.3.1 The Dual Nature of Inheritance in Ei�el

Inheritance is a relationship between classes that fosters the de�nition and
implementation of a new class by combination and specialization of exist-
ing ones. The new class is then called a subclass (or derived class) of its
superclasses (or ancestor classes). The syntax of the inheritance clause is
shown in Figure 26.

Inheritance

inherit
�



�
	�
� ClassType �

� FeatureAdaptation

�
�

�

� ;
�


�
	

�

�

�
�

Syntax Diagram 26: Inheritance clause syntax

Inheritance is characteristic of object-oriented languages. Without it,
a language may only be called object based (e.g., Ada83 or Modula-2).
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Adding inheritance to such languages makes them object oriented (e.g.,
Ada95, Modula-3).

Inheritance has a dual nature. It provides programming by extension
(as opposed to programming by reinvention [24]): a child class extends its
parent class by providing more functionality. This is the module view of
the class. Inheritance also can be used to represent an is-a-kind-of (or is-a)
relationship, thus allowing for classi�cation. This gives the type view of the
class. The Ei�el type system is based on inheritance; that is, assignment
compatibility is de�ned according to the inheritance relationship.

These two di�erent natures of inheritance are not orthogonal. Most of
the time, when you want a class B to be a kind of class A, you also like it
to inherit at least a part of the code de�ned in A. The Ei�el's inheritance
allows you to smoothly go from one extreme (the typing side, or interface
inheritance, where no code is reused) to the other (the module side, or
implementation inheritance, where no part of the interface is reused), or to
stay at any intermediate step.

3.3.2 Module Extension

In contrast to genericity, which allows the reuse of closed modules, inher-
itance allows reusable parts to be customized and combined to build new
classes. Inheritance makes a module always open for modi�cation through
subclassing. Ei�el gives you full control of this customization through the
mechanism of feature adaption, which is described in Section 3.4.

As a module extension mechanism, inheritance allows the programmer
to reuse a class that is almost what is wanted, and to tailor the class in a
way that does not introduce uncontrolled side e�ects into the other (part
of the) software system using the class. It enables an incremental, non
disruptive form of programming. If a class B inherits from A, then B has
two parts, an inherited part and an incremental part (see Figure 3.4).

The inherited part provides B with the same services featured by A
(unless they are customized; see Section 3.4), whereas the incremental part
is the new code, written speci�cally for B.

Consider for example the class Random generator (Example 3.8).
If you need random integer (or Boolean) values, you could derive from
this class a new class (e.g., Multi random generator) having the
same features as Random generator plus a last random integer and a
last random bit feature (see Example 3.23).
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Class B

Class A

Inherits from

incremental part

inherited part

Figure 3.4: Inheritance as a module extension mechanism

3.3.3 Subtyping

Inheritance provides a natural classi�cation for kinds of software objects.
It is the software engineering counterpart of the Linnaeus' classi�cation in
the natural sciences, or the Bourbaki's systematic e�orts to classify math-
ematical objects. Classi�cation allows us to express and to take advantage
of the commonality of objects.

Consider for instance the relationship between a Coffee machine and
an Espresso machine. The latter is a specialization of the former: we
say that the Espresso machine is a kind of Coffee machine.

When a software system is analyzed and designed using an object-
oriented approach, the classi�cations identi�ed during the analysis are pre-
served and enriched during design, and then may be directly implemented
in code. This seamlessness provides a better continuity between the re-
quirements and the code: a small change in the requirements is likely to
produce a small change in the code. Conversely, when a system having
already reached the detailed implementation or maintenance phase needs
to be modi�ed, it is possible to re
ect the changes back to the higher levels
of design, speci�cation, and analysis.

In Ei�el, subtyping is de�ned after subclassing. In the simplest case, if
B inherits from A, then B de�nes a subtype of A. That is, every entity b of
type B could be used at any place where an object of type A is expected
(substitutability principle). In this case, B is also said to conform to A.

Generic classes are special, because they de�ne class (and thus type)
templates instead of real classes and types. We have then the following
(recursive) rule to de�ne type conformance among generic classes: a generic
class B[U] conforms to A[T] only if B conforms to A and U to T. The rule

J.-M. J�ez�equel { Object-Oriented Software Engineering with Eiffel { (c) Addison-Wesley



3.3. INHERITANCE 93

Example 3.23

indexing

description: "random number generator for REAL, INTEGER and BOOLEAN"

class MULTI RANDOM GENERATOR
inherit

RANDOM GENERATOR 5

creation

reset
feature

last random integer(lower,upper:INTEGER) : INTEGER is

�� Return an evenly distributed random number over the 10

�� interval [lower, upper[.
require non empty interval: lower<upper
do

Result := last random real(lower*1.0,upper*1.0).to integer
ensure 15

in bounds: Result >= lower and Result < upper
end; �� last random integer

last random bit : BOOLEAN is

�� Return a single random bit.
do 20

Result := uniform < 0.5
ensure

evenly distributed: �� Probability of `Result = True' is 50%.
end �� last random bit

end �� MULTI RANDOM GENERATOR 25

is recursive, because U and T might be generic classes themselves. This
conformance rule is easily extended when multiple generic parameters are
used.

However, classi�cations are subjective matters that never quite achieve
perfection. Think of the well-known example of ostriches and 
ying: an
ostrich is a bird, a bird is a 
ying animal, but ostriches don't 
y.

Classi�cation is humanity's attempt to bring a semblance of or-
der to the description of an otherwise rather chaotic world. (B.
Meyer)

The need to deal with imperfect inheritance structures (where subclasses
are not true subtypes) seems universal, and poses several problems that are
explored in section ??.
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3.3.4 Inheritance and Expanded Types

The values of entities declared to be of an expanded type are objects rather
than references to objects. This is the only consequence of the expansion
status of a class, which means that an expanded class may inherit freely
from non expanded ones, and conversely. Whether or not the child class
is expanded is never decided by parent classes (the expansion status is not
inherited) but in the child itself, according to the presence or absence of
the keyword expanded in its header. Example 3.24 presents the de�ni-
tion of the Integer class, which inherits from Integer ref and adds an
expanded status.

Example 3.24

expanded class INTEGER
inherit

INTEGER REF
end �� INTEGER

Conversely, Example 3.25 is a possible de�nition of the My integer
class, which inherits from Integer, and thus wipes out its expanded status.

Example 3.25

class MY INTEGER
inherit INTEGER
feature

new feature is

do 5

�� something
end

end

3.3.5 Implicit Inheritance Structure

The inheritance structure of an Ei�el system forms a lattice (oriented with
the inheritance relation) with a maximal element (the class General) and
a minimal one (the pseudo class None); see Figure 3.5. That is, all classes
descend from General and None is a descendant of every class.

Any developer-written class (e.g., A, B, C, D in Figure 3.5) without an
explicit inheritance clause is considered to directly inherit from the class
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GENERAL

ANY

A B C

NONE

D

Figure 3.5: Standard Ei�el Inheritance lattice

Any (as if it included an inheritance clause of the form: inherit Any).
Then by transitivity every class (but General) inherits from Any, and If you remark that a

class may inherit from
Any more than once,
don't worry|this is
not a problem in
Ei�el. It will be
explained in
Section ?? on page
??.

thus every type conforms to Any (hence the name). Any inherits from
General and may be customized for individual projects or teams, thus
providing for project-wide universal properties.

All the features of Any are directly available to all Ei�el classes. The
features print, clone, deep clone, equal, deep equal, default rescue, Void, and
io, used in several previous examples of Ei�el fragments are some of such
universal features that actually belong to the class General. They are not
language keywords, but rather features inherited by all classes through the
implicit inheritance link with Any.

At the other end of the inheritance lattice, the pseudo class None is
considered to inherit from all classes. The inheritance relation is acyclic,
so no class may then inherit from None (which is why a feature exported
to None is private). The other use of None is as the type of the feature
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Figure 3.6: Using a plug adaptor

Void (de�ned in the class General). Void is then a value type-conformant
to every class, and is used as the default initialization value for all entities
of reference types. The classes General, Any, and None belong to the
Ei�el Library Standard that is described in Section 4.3.

3.4 Feature Adaptation

The reuse of Ei�el classes through inheritance may be customized on a
by-feature basis. A useful analogy for this mechanism is the problem of
plugging an electrical razor cord into a foreign wall outlet. The solution
usually is to use a plug adaptor to convert the size and form of the connec-
tors (and sometimes the voltage or the frequency, or both) of your cord to
�t the foreign wall outlet (see Figure 3.6). What is done with this adaptor
is functionally equivalent to changing the foreign wall outlet interface. As
a client, you then may use the adaptor interface instead of the original one.

In Ei�el, for each individual feature inherited from a parent class, you
may either inherit the feature as it is in the parent class (same name,
speci�cation [including signature, preconditions and postconditions], body,
and export status [this is the default behavior]), or change any of these
components with the mechanisms described in the following sections. The
syntax of the feature adaptation is described in Syntax Diagram 27.

3.4.1 Renaming

Renaming is giving a new name to an inherited feature. The syntax of
the rename subclause of the inheritance clause is described in Syntax Dia-
gram 28. This subclause is useful to present a more convenient interface
to clients (for example, if the class Vector inherits from Array, the fea-
ture count might be renamed dimension). Explicit renaming is also the
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FeatureAdaptation

�
� Rename

�
�
�
� NewExports

�
�
�

��
��
� Unde�ne

�
�
�
� Rede�ne

�
�
�
� Select

�
�

end
�



�
	

Syntax Diagram 27: Feature adaptation

Rename

rename
�



�
	�
� FeatureName as

�



�
	NewFeatureName�

� ,
�


�
	

�
�

�
�

Syntax Diagram 28: Rename clause syntax

mechanism used to solve name con
icts in multiple inheritance. Consider
for instance a class Visual random bag inheriting from the class Ran-
dom bag, which has a feature draw, and from the class Picture which
also has a feature draw. We thus have a name con
ict for the feature draw
for objects of type Visual random bag. In contrast to some arti�cial
intelligence{based languages using sophisticated heuristics to solve such
name clashes, Ei�el requires you to do it explicitly through the renaming
of one of the con
icting versions, as in Example 3.26.

3.4.2 Rede�ning

Rede�ning the feature is changing its speci�cation or body, or both. If you
want to rede�ne a feature, you must declare it in the rede�ne subclause of
the inheritance clause.

For example, the process by which the co�ee is produced is dif-
ferent depending on whether you have a Coffee machine or an
Espresso machine. If the class Espresso machine inherits from the
class Coffee machine, the deliver co�ee routine must be rede�ned, as
shown in Example 3.27. This change is, however, constrained to respect

J.-M. J�ez�equel { Object-Oriented Software Engineering with Eiffel { (c) Addison-Wesley



98 CHAPTER 3. OBJECT-ORIENTED ELEMENTS

Example 3.26

class VISUAL RANDOM BAG
inherit

RANDOM BAG
rename

draw as random draw 5

end

PICTURE
creation

...
end �� VISUAL RANDOM BAG 10

Rede�ne

redefine
�



�
	�
� FeatureName�
� ,

�


�
	

�
�

�
�

Syntax Diagram 29: Rede�ne clause syntax

Example 3.27

class ESPRESSO MACHINE
inherit

COFFEE MACHINE
rede�ne

deliver co�ee, needs maintenance 5

end

feature

deliver co�ee is

�� pilot the hardware to deliver a cup of espresso
do 10

�� new method to produce the espresso
end

needs maintenance : BOOLEAN is

�� condition upon which some maintenance is needed
do 15

�� new criteria to evaluate if maintenance is needed
end

end �� ESPRESSO MACHINE
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the semantics of the original feature. The signature must be covariantly
compatible with the original, the precondition can only be weakened, and
the postcondition must be strengthened.

Covariant Signature Rede�nition
The implications of
the type system of the
covariance rule for
rede�nitions are
discussed in
Section ?? on page
??.

Syntactically the covariant signature rede�nition constraint translates to
the following rule. If the original version of a feature f takes an argument of
type A and/or returns a type A (if the feature is an attribute or a function),
then the rede�ned version may only take an argument of type B (or returns
a type B), such that B is a descendant of A or A itself. The inheritance
varies for both in the same direction, hence the name covariance.

Weakening Preconditions

If the precondition is to be changed, the new precondition follows the syn-
tax:

require else new_cond

The precondition of the rede�ned routine is actually the new cond or else
the precondition of the original routine.

Strengthening Postconditions

In the same spirit, the postcondition clause of a rede�ned routine must
follow the syntax:

ensure then new_cond

The postcondition of the rede�ned feature is actually the new cond and then
the postcondition of the original routine. These constraints on a feature
rede�nition provide the necessary semantics to ensure the safety of the Ei�el
inheritance mechanism according to most recent works in this domain [27].

These constraints leave open the possibility of rede�ning a function
without parameters to become an attribute (but not conversely).

3.4.3 Anchored Declarations

Covariance rede�nition is used frequently in the Ei�el world, so a mecha-
nism called anchored declaration has been designed to save a considerable
amount of tedious redeclarations when dealing with signature rede�nitions.

An anchored declaration has a syntax as shown in Syntax Diagram 30.

J.-M. J�ez�equel { Object-Oriented Software Engineering with Eiffel { (c) Addison-Wesley



100 CHAPTER 3. OBJECT-ORIENTED ELEMENTS

Anchored

like
�



�
	Anchor

Syntax Diagram 30: The anchored declaration

The Anchor is either Current or an attribute. The meaning of the
declaration x : like anchor is that whenever the anchor is redeclared
in a descendant class, x follows automatically. Consider for example the
feature is equal, as de�ned in the root of the Ei�el class hierarchy, the kernel
library classGeneral. This anchored de�nition (see Example 3.28) allows

Example 3.28

is equal (other: like Current): BOOLEAN is

�� Is `other' attached to an object considered equal to `Current'?
require

other not void: other == Void

ensure 5

symmetric: Result implies other.is equal (Current)
end

an automatic redeclaration of the signature of the feature is equal in any
class Foo to

is_equal (other: FOO): BOOLEAN

This is equal feature may be rede�ned to �t special equality semantics,
whereas the feature equal (see Section 2.4.1) may not. For example, the
sets A = f1; 2; 3g and B = f1; 3; 2g are mathematically equal, but not
Ei�el equal(A;B). The feature is equal may be rede�ned in a class Set in
such a way that A.is equal(B).

3.4.4 Changing the Export Status

The export status of an inherited feature may be changed in several ways
with the export subclause of the inheritance clause.

With this mechanism, you may either:

� Extend the export status of a set of features, or make them available
to more client classes than in the parent class (\Any" means visible
by all classes),The implications type

of system of this are
discussed in

Section ?? on page
??.
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NewExports

export
�
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Syntax Diagram 31: The \new export" syntax

� Reduce it, hiding a set of features to some clients (or even to all
clients if None is used). This option may be useful if these features
are inherited for implementation purposes only.

Consider for example a class Leased coffee machine representing
co�ee machines leased to special clients (instances of a class called Lease-
holder), who pay a rental fee, but get in exchange the money deposited in
the Leased coffee machine. It is then possible for a Leaseholder to
get access on the feature cash with the declaration shown in Example 3.29.
Any feature not speci�ed in the new export clause keeps the exact export

Example 3.29

class LEASED COFFEE MACHINE
inherit

COFFEE MACHINE
export

fMANAGER,LEASEHOLDERg cash 5

end

end �� LEASED COFFEE MACHINE

status it had in the superclass. The special keyword all counts for all
features of the superclass.

3.4.5 Other Feature Adaptations

You may also:
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� Unde�ne a feature (unde�ne clause), which is mainly useful for choos-
ing one of a set of competing implementations for a feature name in
some cases of multiple inheritance (see Section 3.6.3),

� Select a feature (select clause) as the target for dynamic binding when
there are ambiguities in some cases of repeated inheritance (see Sec-
tion ?? on page ??).

3.5 Polymorphism and Dynamic Binding

3.5.1 Polymorphic Entities

Polymorphism is de�ned in Webster's dictionary as \the quality or state
of being able to assume di�erent forms" [28]. Polymorphic referencing is
the way inheritance polymorphism appears in Ei�el. The association of aExpanded types are

dealt with in
Section 3.5.3.

reference with an object is constrained by the type conformance rule (see
Section 3.3.3): an entity x declared as being of a non expanded type T can
be used to refer to an object of type S, provided the class S is a descendant
of the class T. The entity x is then said to be of static type T, and capable
of assuming the dynamic type S. More generally, an attribute declared as
being of static type T can be used to refer to any object with a dynamic
type that conforms to type T.

Consider the declaration in Example 3.30.

Example 3.30

e : T �� T being a non expanded type

This declaration speci�es that the entity e may only be Void or attached
to objects conforming to T , that is instances of T itself or subclasses of T.
During its lifetime, a non expanded entity may refer to various objects,
not necessarily having the same type (provided they conform to the entity
static type), hence its polymorphic aspect. On the contrary, an expanded
type entity is not polymorphic, because it is really an object and not a
reference to an object. In other words, objects are not polymorphic, only
references are.

The dynamic type of an entity is the type of the object it refers to at
a given point in its lifetime. A non expanded entity may acquire a new
dynamic type either:

� Through a creation instruction with the third form of object creation
described in Section 3.1.1 on page 74. For example, if the class S is
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a descendant of the class T, the creation instruction of Example 3.31
creates an object of type S, attaches it to e, and initializes it with the
creation procedure make,

Example 3.31

!S!e.make �� S being a subclass of T

� Or through any assignment instruction, including actual to formal
mapping of routine parameters and assignment attempt (see Sec-
tion ??). In Example 3.32, d is a reference to an object of type S
and r is a routine with a formal argument e of type T.

Example 3.32

e := d �� e is now attached to an object of type S
r(d) �� inside r, the formal argument e is attached

�� to an object of type S

In both cases, the static type of the entity e is T, and its dynamic type
is S.

3.5.2 Dynamic Binding

Consider a system in which instances of the classes Coffee machine (Ex-
ample 3.10) and Espresso machine (Example 3.27) coexist. Let be m an
entity declared of type Coffee machine that may assume the dynamic
type Espresso machine at some step of the program execution. Assume
that m is asked to deliver more co�ee (m.deliver coffee). The problem
is that we cannot always know at compile time which \deliver co�ee" fea-
ture must be called on m|is it the one de�ned in Coffee machine or in
Espresso machine?

The rule known as dynamic binding states that the dynamic type of
an entity determines which version of the operation is applied. Dynamic
binding allows the choice of the actual version of a feature to be delayed
until run time. Whenever more than one version of a feature might be
applicable, it ensures that the most directly adapted to the target object is
selected. The static constraint on the entity's type ensures that there is at
least one such version.

Dynamic binding of routines to entities is the default rule in Ei�el. It is In C++ only virtual
methods are subject to
dynamic binding.
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a run-time mechanism (basically a table lookup) that is a priori more costly
than a simple procedure call. In modern Ei�el compilers, the appropriate
routine is always found in constant time, whatever the complexity of the
inheritance hierarchy. This time overhead tends to be small (or even negli-
gible) for real applications. Furthermore, there are two cases in which the
dynamic-binding mechanism may be bypassed in favor of a static binding:

� If a feature is declared to be frozen, it may not be rede�ned in
subclasses. Dynamic binding is thus unnecessary.

� When compiling an Ei�el system (that is, a set of classes needed to
produce an executable program), the compiler may become aware
that a feature is never rede�ned in used subclasses, or may statically
know the dynamic type of an entity (e.g., through data 
ow analysis).
In both cases it is well founded to replace the dynamic binding of
the relevant features with a mere procedure call (or even its in-line
expansion).

More details about compiler technology and performances of an Ei�el pro-
gram are given in Section ?? (Implementation E�ciency). Dynamic bind-
ing bypassing remains a compiler optimization that is transparent to the
Ei�el programmer.

3.5.3 Type Conformance and Expanded Types

As discussed in the previous section, entities that denote expanded types
are not polymorphic, because they are only values. If x is an entity of an
expanded type A, only expanded or regular instances of class A may be
assigned to x. Consider the set of declarations in Example 3.33 (with the
de�nitions of Integer and My integer Examples 3.24 and 3.25).

Example 3.33

i : INTEGER REF �� reference to an integer value
j : INTEGER �� an integer value
k : MY INTEGER �� reference to an integer

�� (MY INTEGER inherits from INTEGER)

The assignment i := j is legal, and involves a copy of the value of j in
i. On the other hand, the assignment j := k would not be legal, because
although My integer is a subclass of Integer, k does not conform to
Integer, because Integer is of an expanded type.
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An interesting consequence of this limitation is that operations involv-
ing expanded types such as Integer or Real may be implemented as
e�ciently as in procedural languages, because they are never subject to
dynamic binding.

3.6 Deferred Classes

3.6.1 Deferred Routines

A deferred class is a class with at least one deferred feature, (that is, a
feature with an implementation that is left unspeci�ed). The syntax to
declare a deferred feature is presented in Syntax Diagram 32.

deferredFeature

FeatureName�
� ,

�


�
	

�
�
�
� (
�


�
	EntityDeclarationList )

�


�
	

�
�
�
� :
�


�
	Type

�
�
�

��
� is
�



�
	�
� Obsolete

�
�
�
� HeaderComment

�
�
�

��
��
� Precondition

�
�
�

��
� deferred
�



�
	�
��

��
� Postcondition

�
�

end
�



�
	

Syntax Diagram 32: Deferred Feature syntax

A deferred feature is
equivalent to a pure
virtual function in
C++.

This deferred feature has a speci�cation (a name, a signature, precon-
ditions and postconditions) but no implementation. By opposition, a non
deferred feature is called an e�ective feature (it has a speci�cation and an
implementation). An attribute may not be deferred, because it already has
an implementation (formally the function returning its value).
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Example 3.34

in�x "<" (other : like Current) : BOOLEAN is

�� Is `Current' less than `other'?
require

other not void : other == void

deferred 5

ensure

asymmetric : Result implies not (other < Current)
end

3.6.2 Deferred Classes

As soon as a feature is left deferred, the enclosing class must be declared
deferred. The deferred class syntax is presented in Syntax Diagram 33.

Conversely, a deferred class must have at least one deferred feature.
Consider for example the kernel library class Comparable encapsulating
the notion of objects that may be compared according to a total order
relation. It has a deferred function (infix \ <00) and a number of e�ective
features de�ned after this function.For the sake of

conciseness,
preconditions and
postconditions are

mostly omitted in this
listing.

Example 3.35

indexing

description: "Objects that may be compared according to a

total order relation"

note: "descendants need only define the behavior of infix <"

deferred class COMPARABLE 5

feature

in�x "<" (other : like Current) : BOOLEAN is

�� Is `Current' less than `other'?
require

other not void : other == void 10

deferred

ensure

asymmetric : Result implies not (other < Current)
end

in�x "<=" (other: like Current): BOOLEAN is 15

�� Is current object less than or equal to `other'?
do

Result := not (other < Current)
end

in�x ">" (other: like Current): BOOLEAN is 20
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deferredClassDeclaration

�
� Indexing

�
�
�

��
� deferred
�



�
	class
�



�
	ClassName �

� [
�


�
	FormalGenericList ]

�


�
	

�
�
�

��
��
� obsolete
�



�
	Message

�
�
�

��
��
� inherit
�



�
	ParentList

�
�
�

��
��
� Features

�
�
�

��
��
� Invariant

�
�
�

��
� end
�



�
	�
� --
�



�
	ClassName

�
�

Syntax Diagram 33: Deferred class Syntax

�� Is current object greater than `other'?
do

Result := other < Current

end

in�x ">=" (other: like Current): BOOLEAN is 25

�� Is current object greater than or equal to `other'?
do

Result := not (Current < other)
end

min (other : like Current) : like Current is 30

�� The smaller of `Current' and `other'.
do
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if Current < other then
Result := Current

else 35

Result := other
end �� if

end

max (other : like Current) : like Current is

�� The larger of `Current' and `other'. 40

do

if other < Current then

Result := Current

else

Result := other 45

end �� if
end

invariant

irre
exive comparison: not (Current < Current)
end �� class COMPARABLE 50

Whereas a class is the implementation of an ADT, a deferred class is a
partial implementation of such an ADT (or even the ADT itself). HenceThis is related to the

notion of abstract
class found in various

object-oriented
language.

a deferred class may not be instantiated (see Example 3.36). It merely

Example 3.36

x : COMPARABLE �� legal
!!x �� illegal: COMPARABLE may not be instantiated
x := "Hello world" �� legal: STRING inherits from COMPARABLE

describes the common properties of a group of classes descendant of it. A
deferred class may not have a creation part. Still, a deferred class de�nes
a type (or a type pattern if it is a generic deferred class), and entities may
be declared with this type.

Deferred classes are useful in structuring systems (see Section 3.6.4),
but ultimately only their e�ective subclasses may be instantiated.

3.6.3 Inheritance and Deferred Classes

Beyond the feature adaptation mechanisms (renaming, exportation status,
and rede�nition; see Section 3.4) that are available for all kinds of features,
a child class can change the deferred status of its parent features.
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E�ecting a Routine

This operation provides the inherited deferred feature with an implementa-
tion. No new syntax is required. The feature only needs to be present in a
feature clause of the child class, with the same speci�cation (name, signa-
ture, precondition, and postcondition) as inherited from its parent and with
an implementation. Like any other function with no parameter, a deferred
function may be implemented as an attribute.

If the deferred feature speci�cation needs to be changed in the child
class, the rede�nition mechanism (as described in section 3.4.2) must be
used instead. Since routine overloading (�a la Ada or C++) is not available
in Ei�el, if you mess up the feature signature, the compiler tells you what
to do (either rede�ne the feature to take into account the new signature or
correct it if it was a typo).

Merging Features through unde�nition
Unde�ning is possible
provided the routine
was not frozen.

Unde�ning a feature allows a child class to wipe out the implementation of
an e�ective routine (but not of an attribute) inherited from one of its par-
ents. The syntax of an unde�ne clause is similar to that of a rede�ne clause,
and just precedes it in the feature adaptation clause (Syntax Diagram 27).

Unde�ne

undefine
�



�
	FeatureList

Syntax Diagram 34: Unde�ne

Example 3.37

deferred class CHILD
inherit

PARENT
unde�ne f

end 5

...

In this example, the feature f becomes a deferred feature in the class
Child (which makes it a deferred class) while keeping the speci�cation
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(name, signature, and preconditions, and postconditions) it had in the class
Parent.

The usefulness of this unde�ning mechanism mainly concerns the merg-
ing of multiple inherited features, because a merging is valid only if at most
one merged feature is e�ective.

3.6.4 Deferred Classes: A Structuring Tool

Deferred classes may be used to factor out common properties of a set
of classes into abstract classes. Some abstract classes appear naturally
in the application domain, whereas other abstract classes are arti�cially
manufactured as a convenient means for promoting code reuse. Consider
for example the problem (discussed in depth in Chapter ??) of designing a
linear algebra library around the notions of matrices and vectors.

A fundamental principle applied when designing this library is that
the abstract speci�cation of an entity is dissociated from any kind of im-
plementation detail. Although all matrices, for example, share a common
abstract speci�cation, they do not necessarily require the same implementa-
tion layout. Obviously dense and sparse matrices deserve di�erent internal
representations. The same remark goes for vector entities.

The classesMatrix and Vector are deferred classes: they provide no
details about the way matrices and vectors shall be represented in mem-
ory. The speci�cation of their internal representation is thus left to de-
scendant classes. This does not imply that all features are kept deferred.
Representation-dependent features are simply declared, whereas other fea-
tures are de�ned|i.e., implemented|directly in Matrix and Vector, as
shown in Chapter ??.

3.7 Genericity and Inheritance

Genericity and inheritance are orthogonal concepts in Ei�el [29]. It is then
interesting to see how they can be combined to foster versatile new possi-
bilities for reusing software.

3.7.1 Heterogeneous Containers

A container class is a class that is able to store generic elements. Exam-
ples are the classes List[T], Stack[T], and Array[T], etc. found in most
Ei�el data structure libraries. This constraint is very di�cult to express
in a typeless language like Smalltalk. There is no simple way to forbid a
particular kind of object from going into containers.

J.-M. J�ez�equel { Object-Oriented Software Engineering with Eiffel { (c) Addison-Wesley



3.7. GENERICITY AND INHERITANCE 111

Back to our co�ee machine example, imagine that a number of such
machines are to be monitored to determine whether they need mainte-
nance. We could design a class Manager (as in Example 3.38) that has a
list of co�ee machines (Liste[Coffee machine]; see Example 3.20). The
Espresso machine is a kind of Coffee machine, so one can store both
kinds of co�ee machines in the list. It is thus a heterogeneous container,
restricted to contain objects that are instances of Coffee machine (or
subclasses of Coffee machine).

Example 3.38

class MANAGER
feature

machines : LISTE[COFFEE MACHINE]
add (new : COFFEE MACHINE) is

require 5

exist: new == Void

do

if machines = Void then

!!machines.make(new,Void)
else 10

machines := machines.append(new)
end �� if

end �� add
total needing maintenance : INTEGER is

local m : like machines 15

do

from m := machines
until m = Void

loop

if machines.head.needs maintenance then 20

Result := Result + 1
end �� if
m := machines.tail

end �� loop
end �� total needing maintenance 25

end �� MANAGER

Thanks to dynamic binding, the right version of the feature
needs maintenance is applied to each element of the array in order to com-
pute the total number of co�ee machines that require maintenance. This
routine (lines 14{25 of Example 3.38) may be written without precise knowl-
edge of which objects really are in the heterogeneous container, provided
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they conform to Coffee machine.
In a procedural language (such as C, Pascal, or Ada83), this function

would have been written using a case statement discriminating among case
selector values (encoding on the actual type of the considered object) to
make the correct procedure call (the one from either Coffee machine
or Espresso machine). The same kind of processing then would be re-
peated for each routine dealing with the heterogeneous container. The
object-oriented solution, here based on the dynamic binding of the routine
needs maintenance, makes it possible to avoid such a duplication of code.

Once again, much more than the savings obtained during the design
and the coding, the real savings appear during the maintenance phase of
the software. Imagine that at this stage (maybe 10 years after the soft-
ware is running in production mode), a new kind of Coffee machine is
adopted (e.g., a Cappuccino machine), with a new means to compute its
needs maintenance.

With the procedural language solution, we would have to locate and
modify every routine dealing with the explicit type of a Coffee machine
(e.g., needs maintenance). Then every modi�ed module would have to be
retested (both for the new functionality and for nonregression).

In contrast, in the object-oriented solution, once the Cappuc-
cino machine class has been implemented and tested, no other part of
the software has to be modi�ed (except perhaps for the routine dealing
with the initialization of the container). Most notably, the classManager
does not need to be changed, and hence retested. The maintenance phase
is clearly where the object-oriented approach is the big winner.

3.7.2 Constrained Genericity

The other mechanism for combining genericity and inheritance is con-
strained genericity, which makes it possible to specify that a generic pa-
rameter must be a descendant of a certain class. For example, a generic
Matrix class would require its generic parameter T to be a descendant of
the Numeric class with the declaration:

classMatrix [T� >Numeric]
If the Numeric class features an in�x \+" operation, then a generic Ma-
trix addition operation could be de�ned, based on the addition of the
individual elements of the Matrix.

The notion of constrained genericity encompasses the previously de-
scribed notion of genericity (Section 3.2), which is actually an abbreviation
for genericity constrained by Any. Thus a Liste[T] is equivalent to a
Liste[T � > Any]. . This constrained genericity mechanism enables theThe class

Comparable has been
presented in

Example 3.35

generic de�nition of powerful abstraction, such as a Sorted list[T � >
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Example 3.39

feature

add (other: MATRIX [T]) is
�� add other to Current matrix

require

not Void: (other == Void); 5

same size: (nrow = other.nrow) and (ncolumn = other.ncolumn)
local

i, j : INTEGER
do

from i := 1 10

until i > nrow
loop

from j := 1
until j > ncolumn
loop 15

put(item(i,j) + other.item(i,j), i, j)
j := j + 1

end �� loop on j
i := i + 1

end �� loop on i 20

end �� add

Comparable]|that is, a sorted list of generic elements. The mere notion
that the list is sorted implies that its elements can be compared, hence the
constrained genericity.

Another example is to de�ne an Array in such a way that it can be
sorted (e.g., to encapsulate the quicksort algorithm presented in the Exam-
ple 2.24 of Section 2.6).

Some examples of the use of this mechanism are described in the
Keyword-in-context (KWIC) index problem presented in Section 3.8.

3.8 Case Study: The KWIC System

We now illustrate the concepts introduced in this chapter by considering
the KWIC index problem, inspired by R. Wiener [41] or B. Liskov [26].
It is a well-known case-study in the software engineering literature, so the
reader is advised to compare the Ei�el solution to this problem to the CLU
or the Ada83 one.

J.-M. J�ez�equel { Object-Oriented Software Engineering with Eiffel { (c) Addison-Wesley



114 CHAPTER 3. OBJECT-ORIENTED ELEMENTS

Example 3.40

class SORTABLE ARRAY [T �> COMPARABLE]
inherit

ARRAY [T]
creation

make �� inherited from ARRAY 5

feature

�� dealing with the sortable properties of the array
is sorted : BOOLEAN is

�� is the array sorted
do 10

Result := is sorted range(lower, upper)
end �� is sorted

quick sort is
�� sort the array in nondescending order in O(n log(n)).

do 15

if lower < upper then �� at least 2 items
quick sort range(lower, upper)

end �� if
ensure

sorted: is sorted 20

end �� quick sort

quick sort range(�rst, last: INTEGER) is
�� sort elements �rst..last into increasing order
�� (quick sort algorithm) 25

require range not empty: �rst <= last
�� etc.

end �� class SORTABLE ARRAY

3.8.1 Presentation of the KWIC System

A KWIC index is a list of titles of books, research articles, and so on,
arranged so that each title that contains a \key" word can be found easily.
Associated with the title is the inventory number of the book. For example,
consider the following titles:

The Hitch-Hiker's Guide to the Galaxy G. Adams 4242

Software Engineering with Ada and Modula-2 R. Wierner and R. Sincovec 6543

Object-Oriented Software Engineering with Eiffel J.-M. Jezequel 6789

The Evolution of the Universe: Part 1 C. Charlie 9834

The KWIC index for this list with the \key" words in the �rst column
would be:
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Ada and Modula-2 Software Engineering with 6543

Eiffel Object-Oriented Software Engineering with 6789

Engineering with Ada and Modula-2 Software 6543

Engineering with Eiffel Object-Oriented Software 6789

Evolution of the Universe: Part 1 The 9834

Galaxy The Hitch-Hiker's Guide to the 4242

Guide to the Galaxy The Hitch-Hiker's 4242

Hiker's Guide to the Galaxy The Hitch- 4242

Hitch-Hiker's Guide to the Galaxy The 4242

Modula-2 Software Engineering with Ada and 6543

Object-Oriented Software Engineering with Eiffel 6789

Oriented Software Engineering with Eiffel Object- 6789

Software Engineering with Ada and Modula-2 6543

Software Engineering with Eiffel Object-Oriented 6789

Universe: Part 1 The Evolution of the 9834

In each title, words that are articles, prepositions, or trivial are called
nonkeywords. In the KWIC index, each title appears as often as there are
keywords matching it. The titles are aligned so that all the keywords occur
in the �rst column. The portion of the title that appears before the keyword
has been shifted to the end of the line. The inventory number of the title
is printed to the right of the title.

Such a KWIC index is useful in �nding books and articles. To �nd
titles on a particular subject, you just have to search the KWIC index for
keywords related to the subject and get the corresponding title by reading
�rst the right part, and then the left one. You also have the inventory
number. A typical KWIC index may contain thousands of titles.

3.8.2 The KWIC Object-Oriented Software

A software system to produce a KWIC index is given book descriptions
(basically a title, list of authors, and inventory number, see the class Book
of Example 2.2 on page 36) and the list of nonkeywords as input. The
system identi�es possible keywords and creates entries for the KWIC index,
alphabetizes the entries according to the keywords, and then prints the
KWIC index. The list of nonkeywords may be modi�ed from run to run
by adding or deleting words.

An object-oriented analysis (presented in [41]) allows the identi�cation
of the following classes:

Book as described in Example 2.2.

Kwic entry This class is basically a line of the KWIC index.

Kwic This class is made of KWIC entries. It can be built after a list of
books and a list of nonkeywords.
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Words This class is a representation of a book title broken into an iterable
sequence of words.

Driver The user interface to the KWIC.

In the following, we only present the core of a solution: the classes
Kwic entry, Kwic and Words, and a simple class Driver. These
classes only use classes from the Ei�el Standard Library (e.g., Ar-
ray, String) and classes previously de�ned in this book (e.g., Liste,
Sortable array), so they should run in any existing Ei�el environment.
Still, the reader is welcome to complete the system to get more insight into
his or her Ei�el environment, by using a Hash table of nonkeywords in-
stead of a Liste (for evident e�ciency reasons) or by designing a real user
interface.

3.8.3 The Class Kwic entry

The Kwic entry is made of a book title broken into two parts around a
cutting point. These two parts are called left and right (see the 9th line
in Example 3.41). We want to produce an alphabetized list of the KWIC
entries, so they should be comparable to each other. Hence Kwic entry
inherits from Comparable (5th line), and we have to de�ne the in�x \<"
operator according to a lexicographical order (lines 27{34 in Example 3.41).

Example 3.41

indexing

description: "a line of the KWIC index"

class KWIC ENTRY
inherit

COMPARABLE 5

creation

make
feature

left, right: STRING �� left and right part of the kwic entry
inventory : INTEGER �� inventory number of the corresponding book 10

make (a title : STRING; cutting point, invent : INTEGER) is
�� kwic entry with the title broken around the cutting point

require

not void: a title == Void

positive cutting point: cutting point > 0 15

bounded cutting point: cutting point <= a title.count
do

inventory := invent
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left := a title.substring(cutting point,a title.count)
if cutting point > 1 then 20

right := a title.substring(1,cutting point�1)
else

!!right.make(0) �� empty right part
end �� if

ensure 25

�� right prepended to left is equal to a title
end �� make

in�x "<" (other : like Current) : BOOLEAN is

�� does this entry alphabetically precede other?
require else 30

not void: other == Void

do

Result := (left < other.left)
or else ((left.is equal(other.left)) and right < other.right)

end �� in�x "<" 35

end �� KWIC ENTRY

3.8.4 The Class KWIC

The class KWIC is made of KWIC entries that may be alphabetized. We
will implement it as a Sortable array[Kwic entry] (6th line in Exam-
ple 3.42) that features a quick sort procedure (see Example 3.40). A KWIC
index is built after a list of books and a list of nonkeywords, so its creation
procedure (make) accepts such parameters (13th line). It stores the non-
keyword list in a private attribute (called trivial words) , and then for each
book in the library book list, it makes the corresponding KWIC entries
(lines 18{23).

The procedure make entries from (lines 25{45) creates as many KWIC
entries as there are keywords matching words in the book title. It is based
on a loop asking for successive words of the title and checking whether
their lowercase forms are keywords. If so, the corresponding KWIC entry
is made. The last procedure, print index, is just a loop for printing all
KWIC entries in the format de�ned in Section 3.8.1.

Example 3.42

indexing

description: "Collection of KWIC entries"

implementation: "sortable array, exporting the feature quick_sort"

class KWIC

J.-M. J�ez�equel { Object-Oriented Software Engineering with Eiffel { (c) Addison-Wesley



118 CHAPTER 3. OBJECT-ORIENTED ELEMENTS

inherit 5

SORTABLE ARRAY[KWIC ENTRY]
rename

make as array make
end

creation 10

make
feature

make (library: LISTE[BOOK]; non keywords: LISTE[STRING]) is
local l : like library
do 15

trivial words := non keywords
array make(1,0) �� initialized to empty
from l := library
until l = Void

loop 20

make entries from(l.head)
l := l.tail

end �� loop
end �� make

make entries from(a book: BOOK) is 25

�� make the KWIC entries corresponding to a book title
require exist: a book == Void

local

new entry : KWIC ENTRY
seq : WORDS �� the sequence of words in the book title 30

w : STRING �� the current word of the sequence
do

from !!seq.init(a book.title) �� initialize the sequence
until seq.o�
loop 35

w := seq.word �� get the current word
w.to lower �� convert to lowercase
if not trivial words.has(w) then �� it is a keyword

!!new entry.make(a book.title,seq.start position,
a book.inventory) 40

force(new entry,upper+1) �� append the new entry
end �� if
seq.next �� advance the sequence of words

end �� loop
end �� make entries from 45

print index is

�� print the KWIC index, with the "key" words in the �rst column
local

i, j : INTEGER
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do 50

from i := lower
until i > upper
loop

print(item(i).left)
from j := item(i).left.count 55

until j > 70 � item(i).right.count
loop

print(' ')
j := j + 1

end �� loop 60

print(item(i).right)
print(" "); print(item(i).inventory); print("%N")
i := i + 1

end �� loop
end �� print index 65

feature fNONEg �� private features
trivial words : LISTE[STRING]

end �� KWIC

3.8.5 The Class Words

The classWords is an iterable sequence of the words present in a String.
A word is a substring made of the letters a to z and A to Z only (see the
function is letter, lines 51{55 of Example 3.43).

For its implementation, it simply keeps a reference (ref) on the original
string. The sequence must be initialized with the creation procedure init.
It may be iterated with the procedure next, which advances to the next
word (feature word) in the string.

Example 3.43

indexing

description: "An iterable sequence of words in a STRING"

implementation: "keeps a reference on the original string"

class WORDS
creation 5

init
feature

ref : STRING
init (s : STRING) is

�� init the iterable sequence of words 10

require
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exist: s == Void

do

ref := s
next �� set the sequence on the �rst word 15

end �� init
word : STRING is

�� a copy of the current word in the sequence
require

not o�: not o� 20

do

Result := ref.substring(start position,end position)
end �� word

o� : BOOLEAN is

�� is the sequence of words exhausted? 25

do

Result := start position > ref.count
end �� o�

next is
�� advance to the next word in ref 30

require not o�: not o�
do

from start position := end position + 1
until o� or else is letter(ref.item(start position))
loop 35

start position := start position + 1
end �� loop
if not o� then

from end position := start position
invariant on letter: is letter(ref.item(end position)) 40

variant ref.count � end position + 1
until end position = ref.count or else

not is letter(ref.item(end position + 1))
loop

end position:= end position+ 1 45

end �� loop
end �� if

ensure

progress: start position > old(end position)
end �� next 50

is letter(c:CHARACTER): BOOLEAN is

�� is c a lowercase or uppercase letter, a�z or A�Z ?
do

Result := (c>='a' and c<='z') or (c>='A' and c<='Z')
end �� is letter 55

start position : INTEGER �� of the current word within ref
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end position : INTEGER �� of the current word within ref
invariant

ref exist: ref == Void

end after start: (not o�) implies end position >= start position 60

start on letter: (not o�) implies is letter(ref.item(start position))
end on letter: (not o�) implies is letter(ref.item(end position))
next not letter: end position < ref.count implies

not is letter(ref.item(end position+1))
end �� WORDS 65

3.8.6 The Class Driver

The class Driver is a simple example to exercise the KWIC problem. A
real driver to this problem should provide a real user interface, deal with a
book database, and have an intelligent way to manage the list of nonkey-
words. In Section 4.3.3 we illustrate the input/output facilities available
in the Ei�el Standard Library with a modi�ed version of this class to deal
with data read from a disk or standard input.

Instead, Example 3.44 uses hard-coded data to produce the KWIC index
listing of Section 3.8.1. Despite the high level of the language, the generated
code is kept small and e�cient; e.g., a stripped version of the executable
code for this KWIC system (optimized compilation with the TowerEi�el
compiler 1.4.3.0b) on a SPARC workstation is only 40960 bytes large. See
Appendix ?? for instructions on getting the full source code of this example.

Example 3.44

indexing

description: "exercise the KWIC problem with a simple example"

class DRIVER
creation 5

make
feature

library : LISTE[BOOK]
non kw : LISTE[STRING]
make is 10

local

k : KWIC
do

read library �� read the list of books
read non keywords �� read the list of non keywords 15
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!!k.make(library,non kw) �� build the KWIC
k.quick sort �� sort it
k.print index �� print it

end �� make
read library is 20

�� put a number of books in the 'library' list.
local

b : BOOK
do

!!b.make("The Hitch-Hiker's Guide to the Galaxy", 25

"G. Adams", 4242)
!!library.make(b,Void)
!!b.make("Software Engineering with Ada and Modula-2",

"R. Wierner and R. Sincovec", 6543)
library:=library.append(b) 30

!!b.make("Object-Oriented Software Engineering with Eiffel",
"J.-M. Jezequel", 6789)

library:=library.append(b)
!!b.make("The Evolution of the Universe: Part 1",

"C. Charlie", 9834) 35

library:=library.append(b)
end �� read library

read non keywords is
�� put a number of non keywords in the 'non kw' list.

do 40

!!non kw.make("and",Void)
non kw := non kw.append("of")
non kw := non kw.append("or")
non kw := non kw.append("part")
non kw := non kw.append("s") 45

non kw := non kw.append("the")
non kw := non kw.append("to")
non kw := non kw.append("using")
non kw := non kw.append("with")

end �� read non keywords 50

end �� DRIVER
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Chapter 4

The Ei�el Environments

At this point you know enough about the Ei�el language to understand
probably more than 95% of any Ei�el system. Ei�el programs do
not exist in the void, so this chapter brings in environment matters:
system con�guration and monitoring, an overview of the Ei�el kernel
library, interfacing with external software, and controlling garbage
collection.

4.1 System Assembly and Con�guration

4.1.1 Assembling Classes

An Ei�el software system is the assembly of a number of software compo-
nents, usually a mixture of on-the-shelf and ad hoc classes, with occasionally
a pinch of external software.

Assembling a system consists of telling the compiler where the relevant
classes (and potential external software) are located, which one among them
is the \root" class of the Ei�el program, and which creation feature of the
root class is the program entry point. System assembly can be customized
according to many options such as assertion monitoring level, debugging
level, optimization level, garbage collection status, and tracing. These op-
tions may be speci�ed at a system-wide level or, except for the garbage
collection status, on a per cluster or even on a per class basis. This kind
of speci�cation of what to do with many software components is called an
assembly of classes for Ei�el, (ACE). In the next sections of this chapter, we They contain roughly

the same information,
so some translators
are even available.

describe in further detail the various concepts involved in ACE. However,
we need a notation to describe ACE. There are several variants of such
notation, none of which is standardized yet by NICE. Two of them are:
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LACE is the language for assembling classes in Ei�el. It has an Ei�el-like
syntax, and deals with all the items mentioned previously. It is used
in the environments sold by ISE or Tower Technology.

PDL/RCL provides the same kind of functionality, but it is divided into
two parts: the program description language that deals with the com-
pilation management itself, and the run-time control language that
deals with execution options (assertion monitoring level, debugging
level, etc.). PDL/RCL is used in the SiG Computer GmbH environ-
ments.

You don't need to be very pro�cient in their respective syntaxes, because
usually the environment provides you with a template with all the default
�elds that you simply customize for your application.

We overview the most frequently available mechanisms to con�gure Eif-
fel systems. Compiler vendors sometimes add several useful features (e.g.,
the ability to generate various executables at once, or the possibility of
sharing precompiled code among many systems) that are not described
here.

4.1.2 Generating an Application

The �rst part of an ACE deals with the notion of an application, that is, an
Ei�el system. It allows you to specify the name of the generated executable
program (or possibly the library) and where its entry point is located.

For example, if we consider the ACE corresponding to Example 2.1 (the
\Hello world" program), we would specify that the executable �le should
be called hello, that the root class is the class Hello (found by default
in a �le called hello.e, and that the entry point is the feature make. This
translates in LACE to:

system hello

root hello : make

which corresponds to the following PDL:

program hello

root hello : make

4.1.3 Specifying Clusters

An ACE description should allow you to specify which clusters contain
the sets of classes used in your application. A cluster is not an Ei�el
language-level notion. Any mechanism that allows you to group several
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related classes might be used. In most UNIX, Windows or DOS systems, a
cluster is usually a directory containing a set of �les, themselves containing
class descriptions.

For both LACE and PDL, cluster descriptions come after the keyword
cluster. For example, here is a LACE fragment specifying that two clusters
are used, a local one, which is the current working directory, and the kernel
one, which is probably mandatory for most compilers, because it contains
the Ei�el Standard Library classes. $EIFFEL refers to the

value of an
environment variable.cluster

local: ".";

kernel: "$EIFFEL/clusters/kernel";

The di�erence in the PDL version is that clusters are not given symbolic
names:

cluster

"."

end

"$EIFFEL/library/basic"

end

4.1.4 Excluding and Including Files

By default, all class texts contained in �les su�xed with \.e" are considered
by the compiler for each speci�ed cluster. This default rule may be modi�ed
in two ways:

� If some \.e" su�xed �les do not contain relevant Ei�el classes, they
can be excluded from the cluster, which translates to LACE with:

exclude "file1"; "file2"; .. "filen";

and to PDL with:

exclude "file1", "file2", .. "filen".

� Conversely, if some relevant Ei�el classes are not stored in conven-
tional �les (e.g., because of some OS �lename limitations), they still
can be included in the cluster. With LACE, you may use the include
keyword:

include "file1"; "file2"; .. "filen";
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whereas with PDL you may use a �nd clause to let the compiler look
for speci�c classes in some �les:

find classname1 in "file1", classname2 in "file2".

4.1.5 Dealing with Class Name Clashes

In large projects in which you use several third-party libraries, it is highly
possible that a class name clash will eventually happen. In some cases (e.g.,
if you don't have the sources of the libraries), it will be beyond your reach
to change the source code to avoid such clashes. Both LACE and PDL
provide an external way to rename con
icting classes, in much the same
way as con
icting features are renamed with multiple inheritance.

In LACE, you may use an adapt clause within a cluster speci�cation:

local : "."

adapt

cluster1:

rename C as C1,

D as D1;

cluster2:

rename C as C2;

Thus for all the classes of the local cluster, the classes C and D belonging
to the cluster cluster1 are known under the names C1 and D1, whereas the
class C belonging to the cluster cluster2 is known as C2.

In PDL, the renaming occurs within the original clusters of the con
ict-
ing classes, and a use clause speci�es for which classes the new name is to
be used (this is either an enumeration, or the keyword all to specify it for
all classes).

"$DVP/cluster1":

rename C as C1,

D as D1

use C1, D1 for [list of class]

"$DVP/cluster2":

rename C as C2

use C2 for [list of class]
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4.2 Assertion Monitoring

4.2.1 Rationale

Remember that the Ei�el modularity is based on the \programming by
contract" principle. When you violate the preconditions of a class feature,
you don't respect your part of the contract: there is an error in your code.
It could be called a domain error. It is up to you whether you want a clean
error message at run time (telling you where and why you have an error),
or maximum e�ciency, risking a dirty crash if your program contains a
domain error.

There are thus two mutually exclusive approaches to dealing with as-
sertion checking:

� In the �rst case, you don't use assertion checking to bring you security
at run time (i.e., software fault tolerance), but just to help you test
your classes.

Domain errors are much like type errors, because what you can do
(and what you can't) with a class (the implementation of an ADT)
is de�ned by the feature signatures and the class assertions (precon-
ditions and invariants). However, the problem of checking domain
errors is not (generally) achievable at compile time, and thus run
time checking is the poor man's solution.

If your compiler is clever enough to detect some domain errors at
compile time, then it saves you testing time (the same as for type
errors). When you are con�dent that your program is correct and if
you badly need a full e�ciency, just disable assertion checking.

� The second approach is to use assertions as a variant of defensive
programming, to bring some kind of software fault tolerance. Soft-
ware then may be built with the hypothesis that at least precondition
checking is always enabled, and may be prepared to handle exceptions
raised by precondition violations (see Section ??).

In this case you should be careful about the performance penalties of
assertion checking, at least until Ei�el compilers are clever enough to
check assertions at compile time whenever possible.

4.2.2 Enabling Assertion Checking with LACE

Assertion checking can be enabled with assertion(level), where level is
one of the following keywords representing the level of monitoring:

no means that no assertion is to be checked,
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require means that only preconditions are to be checked,

ensure means that both preconditions and postconditions are to be
checked,

invariant means that class invariants also should be checked (see Sec-
tion 2.5.3 on page 57),

loop means that loop variants and invariants also should be checked (see
Section 2.4.7 on page 48),

check means that check instructions also should be executed (see Sec-
tion 2.4.8 on page 53),

all means everything should be checked (actually, it is equivalent to the
level check).

Assertion monitoring is a subset of the compilation options that can be
speci�ed with LACE. Like other options, they may appear at any of the
three following levels:

� At system-wide level with a top-level default clause,

� At cluster level with a cluster-level default clause,

� On a per class basis, with an option paragraph in the cluster speci�-
cation.

Remember that most
Ei�el environments
o�er a user-friendly

way to generate these
ACEs.

Example:

system hello

root hello : make

default

assertion(ensure); debug(no);

cluster

local: "."

default

assertion(all); debug(all);

end;

kernel: "$EIFFEL/clusters/kernel"

option

assertion(invariant): ARRAY;

end;
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The same mechanism is used to enable tracing (a message is printed each
time a routine is entered or exited) and debug code (that is, code enclosed
in a debug instruction; see Section 2.4.9 on page 54). The LACE keywords
trace and debug are used in much the same way as the assertion keyword.
The argument no means that no debug code is to be executed. A list of
keys may be used to enable the execution of the corresponding debugging
code:

debug("TRACE","RECURSIVITY").

The argument all allows all debugging code to be executed, whatever its
key.

4.2.3 Enabling Assertion Checking with Run-time
Control Language

Enabling assertion checking and debugging code are not compile-time op-
tions speci�ed with PDL, but run-time options speci�ed with run-time con-
trol language (RCL). The advantage of this approach is that you don't have
to recompile your Ei�el system if you just want to modify such options.
The �nal code you get is not fully optimized, however, unless you specify
\optimization: on" in your PDL �le. In that case, you can no longer have
assertion checking.

An RCL �le is simply a list of tags (corresponding to the various asser-
tion checking levels above) followed with a \:" and a list of class names or
the keywords none and all. For example:

precondition: all

postcondition: ARRAY, STRING

loop_variant: none

loop_invariant: none

invariant: ARRAY

debug: none

debug_key: "TRACE","RECURSIVITY"

trace: KWIC_ENTRY

4.3 Overview On the Ei�el Standard Li-

brary

4.3.1 Purposes of the Ei�el Standard Library

Ei�el has a precise language de�nition that guarantees a �rst level of inter-
operability among various compilers. In practice, however, the compilers
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STD_FILES
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Figure 4.1: The inheritance relationships among standard classes

are dependent on a small set of classes called the Ei�el standard library in
areas such as array and string manipulation, object copying and cloning,
input-output, object storage, basic types, etc. For libraries and applica-
tions to be portable across compilers, these classes should present the same
interface in each implementation. This is the purpose of the Ei�el Library
Standard, which is standardized by NICE. This standard is revised on a
yearly base, in the spirit of preserving the technology investment of Ei�el
users, while allowing for improvements. Each successive version of it being
known as a Vintage.

In this section we give an overview of the Vintage 95 of the Ei�el Library
Standard. Full details are available from NICE, or from your Ei�el compiler
vendor (see Appendix ??).

4.3.2 Required Standard Classes

Twenty six classes belong to the Ei�el standard library. These classes are
partially ordered with the inheritance relationships according to Figure 4.1.
Here is a brief description of them:
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1. General, which encapsulates all platform-independent universal
properties of objects (see Section 3.3.5 on page 94).

2. Any, which is an ancestor to all developer-written classes. Any in-
herits from General and may be customized for individual projects
or teams. (see Section 3.3.5 on page 94).

3. Comparable, encapsulating the notion of objects that may be com-
pared according to a total order relation. It has a deferred function
(infix \ <00) and a number of e�ective features de�ned after this
function. (see Section 3.6.2 on page 106 and Example 3.35).

4. Hashable, representing values that may be hashed into an inte-
ger index, for use as keys in hash tables. It has a deferred func-
tion hash code. Among others, Boolean, Character, Integer,
Pointer, and String are descendants of Hashable, thus hash ta-
bles have keys derived from these types.

5. Numeric is a deferred class encapsulating the notion of objects to
which numerical operations (available in a commutative ring) are ap-
plicable (+;�; �; =; etc:). (see Section 3.7.2 on page 112).

6. Boolean, representing truth values, with the usual Boolean oper-
ations, as described in Section 2.5.7 on page 62, with some of its
features presented in Examples 2.18 and 2.19.

7. Character, representing ASCII characters, with comparison opera-
tions. It was outlined in Section 2.3.4 on page 40. This class inherits
from Comparable and Hashable.

8. Integer, for integer values (outlined in Section 2.5.7 on page 62).
This class inherits from Comparable, Numeric and Hashable.

9. Real, 
oating-point values (single precision) as outlined in Sec-
tion 2.5.7. This class inherits from Comparable, Numeric, and
Hashable.

10. Double, 
oating-point values (double precision), also outlined in Sec-
tion 2.5.7. This class inherits from Comparable, Numeric, and
Hashable.

11. Pointer, representing references to objects meant to be exchanged
with non-Ei�el software (see Section 4.4.2 on page 136). Pointers are
Hashable.
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12. Array, implementing sequences of values, all of the same type or of
a conforming one, accessible through integer indices in a contiguous
interval. (see Section 3.2.3 on page 88, and Example 3.22 on page
90).

13. String, implementing sequences of characters, accessible through in-
teger indices in a contiguous range. It was described in Section 3.1.5
on page 80, with some of its features presented in Example 3.11 on
page 82 to 3.16. This class inherits from Comparable and Hash-
able.

14. Std files, encapsulating commonly used input and output mech-
anisms. Most notably, the feature io of the class General is an
instance of Std files that may be used by any class to deal with ba-
sic input/output such as reading or writing integers, reals, or strings
from or to standard input or standard output or standard error.

15. File, viewed as persistent sequences of characters (see Section 4.3.3).

16. Storable, encapsulating the notion of objects that may be stored
and retrieved along with all their dependents. This class may be
used as an ancestor by classes needing persistency properties. It thus
provides a primitive connection toward object-oriented databases.

17. Memory, encapsulating facilities for tuning up the garbage collection
mechanism. This class may be used either as an ancestor or as a
supplier by classes that require its facilities (this will be described in
Section 4.5.3 in relation to garbage collection). Its interface appears
as Example 4.6 on page 141.

18. Exceptions, encapsulating facilities for adapting the exception han-
dling mechanism. It is described in Section ?? and its interface
appears as Example ?? on page ??.

19. Arguments, encapsulating facilities for accessing command-line ar-
guments (see Section 4.3.3).

20. Platform, encapsulating platform-dependent properties such as the
number of bits in an Integer or a Real.

In addition, the six classes Boolean ref, Character ref, Inte-
ger ref, Real ref, Double ref, and Pointer ref are available as the
reference classes corresponding to the six basic types.
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4.3.3 Using I/O Classes: An Example

The classes Arguments, File, and Std file can be used to build a new
driver for the KWIC system described in Section 3.8. This new driver in-
herits from the class Driver of Example 3.44 and rede�nes the procedures
read library and read nonkeywords to deal respectively with a �le of books
given as the �rst argument on the command line, and a �le of nonkeywords
given as the second argument on the command line or the standard input
if the second argument is \-". These procedures deal with abnormal cases
in reading their input �les through exceptions.

Example 4.1

indexing

description: "exercise the KWIC problem on a small database"

class FILEDRIVER
inherit

DRIVER 5

rede�ne read library, read non keywords
end

ARGUMENTS
creation

make 10

feature

read library is

�� read book descriptions from the �le whose name is given
�� as argument(1). The format of a book description is:
�� title %T authors %T inventory number 15

�� (%T is the <TAB> character in Ei�el)
local

f : FILE
title, authors : STRING
inventory : INTEGER 20

b : BOOK
tab position1, tab position2 : INTEGER
new head : like library

do

from !!f.make open read(argument(1)) 25

until f.end of �le
loop

f.readline �� read a line from f and leave it in 'laststring'
tab position1 := f.laststring.index of('%T',1)

�� get position of the �rst %T 30

title := f.laststring.substring(1,tab position1�1)
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�� extract title
tab position2 := f.laststring.index of('%T',tab position1+1)

�� get position of the second %T
authors := f.laststring.substring(tab position1+1, 35

tab position2�1) �� extract authors
inventory := f.laststring.substring(tab position2+1,

f.laststring.count).to integer
!!b.make(title,authors,inventory) �� make a new book
!!new head.make(b,library) �� add it to the library 40

library := new head
end �� loop
rescue

io.error.putstring(argument(1))
io.error.putstring(": read error%N") 45

�� print error message on STDERR & propagate the exception
end �� read library

read non keywords is
�� read a list of non keywords from the �le whose
�� name is given as argument(2). If the name is '�', 50

�� then read from STDIN
local

f : FILE �� source of data
word : STRING �� to store a non keywords
new head : like non kw 55

do

if argument(2).is equal("-") then �� read from STDIN
f := io.input

else �� read from �le argument(2)
!!f.make open read(argument(2)) 60

end �� if
from

until f.end of �le
loop

f.readword �� read a word and leave it in f.laststring 65

word := clone(f.laststring) �� clone the last word read
!!new head.make(word,non kw) �� add it to the list
non kw := new head

end �� loop
rescue 70

io.error.putstring(argument(2))
io.error.putstring(": read error%N")
�� print error message on STDERR & propagate the exception

end �� read non keywords
end �� FILEDRIVER 75
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4.4 Interfacing with Other Languages

4.4.1 Declaring external Routines

Ei�el promotes the construction of software systems through the assembly
of reusable software components, so it has to be possible to interface new
Ei�el software with existing pieces written in other languages. Also, if Ei�el
is to be used within the context of embedded systems, the problem of inter-
facing with the low-level functions (usually written in assembly language
or C) must be dealt with.

As seen in Section 2.5, the routine body of an e�ective routine may Other e�ective
routines are internal,
that is, they begin with
do or once; see
page 54.

be external, that is, not implemented within an Ei�el class. To specify
that a routine has an external implementation, one must use the keyword
external instead of do or once. This keyword must be followed by a
manifest string (that is, a string between double quotes) indicating the
language in which the routine is written (e.g., \C"). The declaration of
Example 4.2 can be used to make the UNIX system call sync available to
an Ei�el system.

Example 4.2

sync is

�� forces pending output to be written out immediately to the disk
external

"C"

end 5

The actual implementation language is not that important, as long as it
follows calling conventions that are compatible with the language speci�ed
in the manifest constant.

It is possible to refer to an external routine through a name other than
its original name. This renaming is useful for giving a routine a new Ei�el
name to follow naming conventions (see Section ??), or simply because the
foreign name contains uppercase letters, or otherwise does not match Ei�el
syntax (e.g., leading underscore). In such a case you may use an alias, that
is a syntactic clause introduced with the keyword alias and followed with a
manifest string containing the original (foreign) name of the routine (e.g.,
getpid in Example 4.3).

The syntax of an external routine body is presented in Syntax Dia-
gram 35.
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Example 4.3

pid : INTEGER is

�� the id of the process executing this program
external

"C"

alias 5

"getpid"

end

External

external
�



�
	LanguageName �

� alias
�



�
	ManifestString

�
�

LanguageName

ManifestString

Syntax Diagram 35: External routine declaration syntax

4.4.2 Calling External Routines

Once they are given an Ei�el speci�cation (signature, and possibly precon-
ditions and postconditions), external routines may be called exactly like
internal ones. The only caveat lies in the argument and result transmission:
their type must be common to Ei�el and the external language. Clearly,
this depends on both the Ei�el implementation and the foreign language
one.If you are not using

this case (e.g., you use
DOS or

Windows 3.1), check
with your compiler

vendor.

In the simplest case where the foreign language is C on a 32-bit computer
(which is the case of most UNIX systems, Windows'95 or Windows NT), a
given implementation of Ei�el might provide the following mappings:

Ei�el type C type
Integer int
Real 
oat
Double double
Character char
Pointer (void*)

The standard library classes String and Array also provide (not yet
standardized) features to facilitate the transmission of string and array
parameters between Ei�el and C.
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Consider for example the function system found in most UNIX, Win-
dows and DOS environments. It takes as its parameter a C string (a pointer
to a memory zone ending with a NUL character), and gives it to the shell
as input. In the TowerEi�el environment, a feature called to c can be used

Example 4.4

system (c string:POINTER) is
�� gives the c string to the shell as input,
�� just as if it had been typed as a command from a terminal
external

"C" 5

end

to convert an Ei�el String to a C string. This feature is named to pointer
in the ISE environment. An Ei�el feature might then make use of features
such as pid or system as shown in Example 4.5.

Example 4.5

foo is

�� print the pid and list the
�� directory
local

command : STRING 5

do

io.putstring("This process number is: ")
io.putint(pid); io.new line
command := "ls"

io.putstring("This directory contains:%N") 10

system(command.to pointer) �� to c for TowerEi�el
end �� foo

Routines that deal with reference type may be declared on the external
side as expecting a pointer on anything (void* in C). As long as the foreign
routine only stores or forwards the reference, no major problem will arise.

To do anything more, the routine must access the internal structure of
the object, using for instance the C Ei�el call-in library (CECIL) library
(provided with some Ei�el implementations) for the C language.

The CECIL library contains macros, functions, types, and error codes
dealing with the view C programs have on Ei�el objects, and how to call
(back) features on them. Their actual contents are not yet standardized
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by NICE, so you should check your vendor-speci�c documentation for more
information.

4.4.3 The Address Operator

Ei�el provides an address operator $ with which you can obtain the ad-
dress of features (both attributes and routines) from the enclosing class.
This operator returns an object of type Pointer that is useful only for
transmitting attribute or routine addresses to external software.

This mechanism can be used to implement callback to Ei�el routines
from a user interface. The problem with this approach is that because
the address of a feature is static by nature, you lose all the advantages of
dynamic binding and jeopardize your program integrity.

4.4.4 Linking with External Software

Unless all of the external routines belong to the standard C library (libc),
you must specify in your ACE �le where to �nd their code.

With LACE, you may specify under an external clause the names of the
object �les (\.o") and library �les (\.a") containing the external routines
you need to link with:

external

object: "filename.o $MYSOFT/mylib.a -ltermcap".

With PDL, you use two separate clauses for object �les and library �les:

link "filename.o"

lib "$MYSOFT/mylib.a -ltermcap".

Most vendor environments allow their ACE �les to drive one or several
make�les that could be needed to deal with the external �le dependency
management.

4.5 Garbage Collection

4.5.1 De�nition

With many languages, programmers must explicitly reclaim heap memory
at some point in the program by using a free or a dispose statement. Ei�el
frees the programmer from this burden, by means of a garbage collector.
The garbage collector's function [22] is to:In practice, these two

phases may be
interleaved, because

the reclamation
technique is strongly

dependent on the
garbage detection one.

J.-M. J�ez�equel { Object-Oriented Software Engineering with Eiffel { (c) Addison-Wesley



4.5. GARBAGE COLLECTION 139

1. Find data objects that are no longer in use or distinguish the live
objects from the garbage in some way (garbage detection),

2. Make their space available for reuse by the running program or reclaim
the garbage objects' storage (garbage reclamation),

3. Optionally move objects in memory to enable memory compaction
(i.e., defragmentation), thus improving the locality of reference.

An object is considered garbage and hence subject to reclamation if it is
not reachable by the running program via any path of reference traversals.
Live (that is reachable) objects are preserved by the collector, ensuring
that the program can never traverse a dangling reference into a deallocated
object.

The set of live objects is thus the set of objects on any directed path
of references from the root object, or the instance of the root class created
when the program starts. Any object that is not reachable from the root
object is garbage, (useless) because there is no legal sequence of program
actions that would allow the program to reach that object. Garbage objects
therefore can't a�ect the future course of the computation, and their space
may be safely reclaimed.

4.5.2 Interest for Software Correctness
A comprehensive
overview of garbage
collection is available
in [42].

Garbage collection is necessary for fully modular programming to avoid in-
troducing unnecessary intermodule dependencies. If objects must be deal-
located explicitly, some module must be responsible for knowing when other
objects are no longer interested in a particular object. Thus, many mod-
ules must cooperate closely (liveness is a global property). This cooper-
ation leads to a tight binding between supposedly independent modules,
and introduces nonlocal bookkeeping into routines that might otherwise be
locally understandable and 
exibly composable. This bookkeeping inhibits
abstraction and reduces extensibility, because when new functionality is
implemented, the bookkeeping code must be updated.

The unnecessary complications and subtle interactions created by ex-
plicit storage allocation and deallocation are especially troublesome because
programming mistakes often break the basic abstractions of the program-
ming language, making errors hard to diagnose. Failing to reclaim memory
at the proper point may lead to memory leaks; in other words, unreclaimed
memory gradually accumulates until the program terminates or the swap
space is exhausted. Reclaiming memory too soon can lead to very strange
behavior, because an object's space may be reused to store completely dif-
ferent data while an old reference still exists.
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These programming errors are particularly dangerous because they of-
ten fail to show up repeatably, making debugging very di�cult (although
products are available that can help). In the worst case, they don't show
up at all until the program is stressed in an unusual way. For instance, if
the allocator happens not to reuse a particular object's space, a dangling
pointer may not cause a problem during the testing phase of the software.
Later, perhaps long after delivery, the application may crash because of
a special memory access pattern, or because of any other apparently un-
determined reason. Similarly, some memory leaks (called slow leaks) may
not be noticeable while a program is being used in normal ways|perhaps
for many years|because the program terminates before too much extra
space is used. If the code is incorporated into a long-running server pro-
gram, however, the server eventually will exhaust the available memory and
crash.

These problems lead many applications programmers to implement
some form of application-speci�c garbage collection (e.g., reference count-
ing) within a large software system. This obvious need for a reusable,
bullet-proof garbage collection subsystem explains why garbage collection
has to be part of any Ei�el implementation, and not left on the programmer
responsibility.

4.5.3 The Cost of Garbage Collection

It was once widely believed that garbage collection was quite expensive rela-
tive to explicit heap management, but several studies [1, 46, 39] have shown
that garbage collection is sometimes cheaper than explicit deallocation, and
is usually competitive with it.

A well-implemented garbage collector should not slow running programs
down by more than 10% (with respect to explicit heap deallocation).

Some programmers regard such a cost as unacceptable, but many others
believe it to be a small price for the bene�ts in convenience, development
time, and reliability. In the long run, poor program structures induced by
manual garbage collection may incur extra development and maintenance
costs, and may cause programmer time to be spent on maintaining inelegant
code rather than optimizing time-critical parts of applications. Even for
C and C++, several add-on packages exist to retro�t them with garbage
collection [4].

Recent advances in garbage collection technology make automatic stor-
age reclamation a�ordable for use in high-performance systems. Genera-
tional techniques reduce the basic costs and disruptiveness of collection by
exploiting the empirically observed tendency of objects to die young. Incre-
mental techniques may even make garbage collection relatively attractive
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for real-time systems [11, 23, 38, 43].

Most Ei�el implementations come with such an incremental garbage
collector, which can be activated and suspended at will.

4.5.4 Controlling the Garbage Collector

To control the garbage collector, you may inherit from (or use an instance
of) the standard standard library class Memory (the interface of which is
presented in Example 4.6), and call collection o� at the beginning of your
application. Then, once in a while or each time you have some time to waste
(e.g., during asynchronous I/O or in a reactive system main loop when no
event is waiting to be processed), you may call the routine collection on to
ask for a partial garbage collection. The more frequently you call it, the
less time it takes. An example of this process is presented in Chapter ??,
along with actual performance results in Section ??.

Example 4.6

indexing

description: "Facilities for tuning the memory management system"

class interface MEMORY
feature

full collect 5

�� Force an immediate garbage collection if garbage collection is
�� enabled; otherwise do nothing.

collection o�
�� Disable the garbage collector.

collection on 10

�� Enable the garbage collector.
collecting : BOOLEAN
�� Is garbage collecting enabled?

feature

�� Finalization. 15

dispose
�� Called just before the garbage collector reclaims the object.
�� This is only intended to enable cleaning of external resources.
�� The object should not do remote calls on other objects since
�� those may also be dead and have already been reclaimed. 20

�� The current object is freed after the `dispose' routine returns.
end �� MEMORY

J.-M. J�ez�equel { Object-Oriented Software Engineering with Eiffel { (c) Addison-Wesley



142 CHAPTER 4. THE EIFFEL ENVIRONMENTS

4.5.5 Finalization

Finalization is the ability to perform actions automatically when an object
is reclaimed [15]. It is especially useful when an object manages an external
resource such as a �le or a network connection. For example, it may be
important to close a �le when the object dealing with it is reclaimed. Fi-
nalization thus can generalize the garbage collector so that other resources
are managed in much the same way as heap memory and with similar pro-
gram structure. This generalization makes it possible to write more general
and reusable code, rather than having to treat certain kinds of objects very
di�erently than normal objects.

An Ei�el class that requires �nalization facilities can inherit from the
standard library class Memory (see its interface in Example 4.6). It then
may rede�ne the procedure dispose (which does nothing by default) to
implement the �nalization actions. However, because �nalization occurs
asynchronously (i.e., whenever the collector notices the object is unreach-
able and does something about it), the �nalization code should be written
with care. It should concentrate on cleaning external resources and should
not do remote calls on other objects because those also may be dead and
may have been reclaimed already.
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