
The lcc 4.x Code-Generation Interface

Christopher W. Fraser and David R. Hanson
Microsoft Research

cwfraser@microsoft.com drh@microsoft.com

July 2001

Technical Report
MSR-TR-2001-64

Abstract

Lcc is a widely used compiler for Standard C described in A Retargetable C
Compiler: Design and Implementation. This report details the lcc 4.x code-
generation interface, which defines the interaction between the target-
independent front end and the target-dependent back ends. This interface
supercedes the interface described in Chap. 5 of A Retargetable C Com-
piler. Additional infomation about lcc is at http://www.cs.princeton.edu/
software/lcc/.

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com/

http://www.research.microsoft.com/
http://www.cs.princeton.edu/software/lcc/
http://www.cs.princeton.edu/software/lcc/

The lcc 4.x Code-Generation Interface

1. Introduction

Lcc is a widely used compiler for Standard C described in A Retargetable C Compiler [1]. Version
4.x is the current release of lcc, and it uses a different code-generation interface than the inter-
face described in Chap. 5 of Reference 1. This report details the 4.x interface. Lcc distributions
are available at http://www.cs.princeton.edu/software/lcc/ along with installation instruc-
tions [2].

The code generation interface specifies the interaction between lcc’s target-independent front
end and target-dependent back ends. The interface consists of a few shared data structures, a
33-operator language, which encodes the executable code from a source program in directed
acyclic graphs, or dags, and 18 functions that manipulate or modify dags and other shared data
structures. On most targets, implementations of many of these functions are very simple. The
front and back ends share some fields of the shared data structures, but other fields are private
to the front or back end. In the descriptions below, dimmed fields are private to the front end
and are not explained here.

The front and back ends are packaged together in a single, monolithic program, and they are
clients of each other. The front end calls on the back end to generate and emit code. The back
end calls on the front end to perform output, allocate storage, interrogate types, and manage
nodes, symbols, and strings. The front-end functions that back ends may call are summarized in
the sections below.

2. Interface Records

A cross-compiler produces code for one machine while running on another. Lcc can be linked
with code generators for several targets, so it can be used as either a native compiler or a cross-
compiler. lcc’s interface record captures everything that its front end needs to know about a tar-
get machine, including pointers to the interface routines, type metrics, and interface flags. The
interface record is defined in Figure 1.

The interface record has fields for type metrics, interface flags, and pointers to interface func-
tions. The x field is an extension in which the back end stores target-specific interface data and
functions. The x field is private to the back end and is defined in config.h.

Lcc has a distinct instance of the interface record for each target, but interface records can
share function pointers.

A type metric specifies the size and alignment for a primitive type:

typedef struct metrics {
unsigned char size, align, outofline;

} Metrics;

The outofline flag controls the placements of constants of the associated type. If outofline is
one, constants cannot appear in dags; such constants are placed in anonymous static variables
and their values are accessed by fetching the variables. Each primitive type has a metric field in
the interface record, as shown in Figure 1. ptrmetric describes pointers of all types. The align-
ment of a structure is the maximum of the alignments of its fields and structmetric.align,
which thus gives the minimum alignment for structures; structmetric.size is unused. Back
ends usually set outofline to zero only for those types whose values can appear as immediate
operands of instructions.
1

http://www.cs.princeton.edu/software/lcc/
http://www.cs.princeton.edu/software/lcc/pkg/src/config.h

The size and alignment for characters must be one. The front end correctly treats the signed
and unsigned integer types as distinct types, but it assumes that they all share the signed integer
type metrics. Likewise for the floating types.

The 18 interface functions are described in sections 7–10. These function pointers are often
denoted by just their name. For example, gen is used instead of the more accurate but verbose
‘the function pointed to by the gen field of the interface record.’

The interface record also holds pointers to some functions that the front end calls to emit
symbol tables for debuggers. This report does not describe these ‘stab’ functions.

typedef struct interface {
Metrics charmetric;
Metrics shortmetric;
Metrics intmetric;
Metrics longmetric;
Metrics longlongmetric;
Metrics floatmetric;
Metrics doublemetric;
Metrics longdoublemetric;
Metrics ptrmetric;
Metrics structmetric;
unsigned little_endian:1;
unsigned mulops_calls:1;
unsigned wants_callb:1;
unsigned wants_argb:1;
unsigned left_to_right:1;
unsigned wants_dag:1;
unsigned unsigned_char:1;
void (*address)(Symbol, Symbol, long);
void (*blockbeg)(Env *);
void (*blockend)(Env *);
void (*defaddress)(Symbol);
void (*defconst)(int, int, Value);
void (*defstring)(int n, char *);
void (*defsymbol)(Symbol);
void (*emit)(Node);
void (*export)(Symbol);
void (*function)(Symbol, Symbol[], Symbol[], int);
Node (*gen)(Node);
void (*global)(Symbol);
void (*import)(Symbol);
void (*local)(Symbol);
void (*progbeg)(int, char *[]);
void (*progend)(void);
void (*segment)(int);
void (*space)(int);
void (*stabblock)(int, int, Symbol*);
void (*stabend)(Coordinate *, Symbol, Coordinate **,

Symbol *, Symbol *);
void (*stabfend)(Symbol, int);
void (*stabinit)(char *, int, char *[]);
void (*stabline)(Coordinate *);
void (*stabsym)(Symbol);
void (*stabtype)(Symbol);
Xinterface x;

} Interface;

Figure 1. The interface record.
2

3. Symbols

A symbol represents a variable, label, type, or constant and is defined in Figure 2. The scope and

sclass fields identify the kind of symbol. For variables and constants, the back end may query
the type field to learn the data type suffix of the item. For variables and labels, the floating-
point value of the ref field approximates the number of times that variable or label is refer-
enced; a nonzero value thus indicates that the variable or label is referenced at least once. For
labels, constants, and some variables, a field of the union u supplies additional data as detailed
in Figure 3.

Variables have a scope equal to GLOBAL, PARAM, or LOCAL k for nesting level k. sclass is
STATIC, AUTO, EXTERN, or REGISTER. The name of most variables is the name used in the source
code. For temporaries and other generated variables, name is a digit sequence. For global and
static variables, u.seg gives the logical segment in which the variable is defined. If the interface
flag wants_dag is zero, the front end generates explicit temporary variables to hold common
subexpressions—those used more than once. It sets the u.t.cse fields of these symbols to the
dag nodes that compute the values stored in them.
 The flags temporary and generated are set for temporaries, and the flag generated is set

for labels and other generated variables, like those that hold string literals. computed is set if the
symbol was defined by calling the interface function address. structarg identifies structure
parameters when the interface flag wants_argb is set; the material below on wants_argb elabo-
rates. defined is set when the front end announces a symbol to the back end via the interface
functions defsymbol, address, local, or function.

Labels have a scope equal to LABELS. The u.l.label field is a unique numeric value that
identifies the label, and name is the string representation of that value. Labels have no type or
sclass.

Constants have a scope equal to CONSTANTS, and an sclass equal to STATIC. For an integral
or pointer constant, name is its string representation as a C constant. For other types, name is
undefined. The actual value of the constant is stored in the u.c.v field, which is defined by:

typedef struct symbol *Symbol;

struct symbol {
char *name;
int scope;
Coordinate src;
Symbol up;
List uses;
int sclass;
unsigned structarg:1;
unsigned addressed:1;
unsigned computed:1;
unsigned temporary:1;
unsigned generated:1;
unsigned defined:1;
Type type;
float ref;
union {

…See Figure 3…
} u;
Xsymbol x;

}

Figure 2. The symbol structure.
3

typedef union value {
long i;
unsigned long u;
long double d;
void *p;
void (*g)(void);

} Value;

The type of a constant indicates which Value field holds the actual value. If a variable is gener-
ated to hold the constant, u.c.loc points to the symbol-table entry for that variable.

The src field gives the source location at which the symbol is defined as a ‘source coordinate:’

typedef struct coord {
char *file;
unsigned x, y;

} Coordinate;

src.y is the line number and src.x is the character number within that line; both are zero-
based.

union {
struct {

int label;
Symbol equatedto;

} l;
struct {

unsigned cfields:1;
unsigned vfields:1;
Table ftab;
Field flist;

} s;
int value;
Symbol *idlist;
struct {

Value min, max;
} limits;
struct {

Value v;
Symbol loc;

} c;
struct {

Coordinate pt;
int label;
int ncalls;
Symbol *callee;

} f;
int seg;
Symbol alias;
struct {

Node cse;
int replace;
Symbol next;

} t;
} u;

Figure 3. The u structure in symbols.
4

 Symbols have an x field with type Xsymbol, defined in config.h. It’s an extension in which
the back end stores target-specific data for the symbol, like the stack offset for locals. The x
field is private to the back end, and thus its contents are not part of the interface.

3.1 Symbol Constructors

Symbol constant(Type ty, Value v)
installs a constant with type ty and value v into the symbol table with a scope of CONSTANTS,
if necessary, and returns a pointer to the symbol-table entry. ty must be a INT, UNSIGNED,
FLOAT, ARRAY, POINTER, or FUNCTION type with the corresponding value in v.i, v.u, v.d, v.p,
v.p, or v.g.

Symbol findlabel(int label)
returns a symbol-table entry for the label label, creating it, if necessary. The entry has scope
LABELS.

Symbol intconst(int n)
calls constant to install the int constant n into the symbol table.

Symbol newtemp(int sclass, int suffix, int size)
creates a temporary with storage class sclass and the type returned by btot(suffix), and
returns a pointer to the symbol-table entry. The new temporary is announced by calling
local.

4. Types

Symbols have a type field. If the symbol represents a constant or variable, the type field points
to a structure that describes the type of the item:

typedef struct type *Type;

struct type {
int op;
Type type;
int align;
int size;
union {

Symbol sym;
struct {

unsigned oldstyle:1;
Type *proto;

} f;
} u;
Xtype x;

}

The op field holds an integer operator code, and the type field holds the operand. The operators
are the values of the following global enumeration constants or combinations of their values:

INT UNSIGNED FLOAT ENUM
ARRAY STRUCT UNION
POINTER FUNCTION
VOID
CONST
5

VOLATILE
CONST+VOLATILE

The align and size fields give the type's alignment and the size of objects of that type in
bytes. The size must be a multiple of the alignment. The back end must allocate space for a vari-
able so that its address is a multiple of its type's alignment. The size field can be zero, which
denotes an incomplete type.

The INT, UNSIGNED, and ENUM operators define the integral types, and the FLOAT operator
defines the floating types. Together, these types are known as the arithmetic types. The various
C arithmetic types are represented by these types with the sizes and alignments taken from the
type metrics in the interface record. For example, the C type ‘char’ is represented by a type with
an INT op field and size and align fields equal to one. The front end initializes and exports
types for the C built-in types:

Type chartype
Type widechar
Type doubletype
Type floattype
Type inttype
Type longdouble
Type longtype
Type longlong
Type shorttype
Type signedchar
Type unsignedchar
Type unsignedlonglong
Type unsignedlong
Type unsignedshort
Type unsignedtype

Except for ENUM types, the u.sym field of an arithmetic type points to a GLOBAL symbol for the
type. u.sym->name is the C type name, u.sym->type points back to the type structure,
u.sym->addressed is the outofline field of the relevant metric, and u.sym->u.limits.min
and u.sym->u.limits.max give the minimium and maximum values of the type.

Except for ENUM types, the arithmetic types have no operands. The type field of an ENUM type
is its compatible integral type, i.e., the type of the enumeration identifiers. For lcc, this type is
always inttype. The u.sym field points to a symbol for its tag. u.sym->name is the tag,
u.sym->type is the enumeration type, and u.sym->u.idlist points to a null-terminated array
of symbols for the enumeration constants associated with the enumeration type. For each
u.sym->u.idlist[i], sclass is ENUM, type is the enumeration type, and u.value is the inte-
gral value of the enumeration constant.

The ARRAY, STRUCT, and UNION operators identify the aggregate types. ARRAY's operand is the
element type.

 STRUCT and UNION do not have operands; u.sym points to a symbol that describes the fields.
u.sym->name is tag and u.sym->u.s->fields is a null-terminated linked list of field struc-
tures, one for each field in the order the fields appear in the structure:

typedef struct field *Field;

struct field {
char *name;
6

Type type;
int offset;
short bitsize;
short lsb;
Field link;

}

name holds the field name, type is the field's type, and offset is the byte offset to the field in
an instance of the structure. When a field describes a bit field, the type field is either inttype
or unsignedtype, because those are the only two types allowed for bit fields. The lsb field is
nonzero and is the number of the least significant bit in the bit field plus one, where bit num-
bers start at zero with the least significant bit. This bit field representation for bit fields does
not depend on the target's endianness; the same representation is used for both big and little
endians. The flags u.sym->u.s.cfields and u.sym->vfields are one if the structure or union
type has any const-qualified or volatile-qualified fields.

The POINTER operator defines pointer types, and the operand gives the referenced type. The
front end initializes and exports the following types:

Type charptype
Type funcptype
Type voidptype
Type unsignedptr
Type signedptr

funcptype and voidptype are the C types ‘void (*)(void)’ and ‘void*,’ which are the putative
function pointer and object pointer. unsignedptr and signedptr are UNSIGNED and INT types
whose sizes and alignments are take from IR->ptrrmetric.

The FUNCTION operator defines function types. The operand is the return type, and
u.f.oldstyle is one if the type definition is ‘old-style;’ that is, without a prototype. If the func-
tion type is defined with a prototype, u.f.proto points to a null-terminated array of types for
each formal parameter. If the function type has a variable number of arguments, the array con-
sists of the types of the declared arguments, voidtype, and the terminating null.

The VOID operator identifies the void type; it has no operand and its size and alignment are
both zero. The front end initializes and exports the single instance of the void type:

Type voidtype

The CONST and VOLATILE operators specify qualified types; their operands are the unqualified
versions of the types. The sum CONST+VOLATILE is also a type operator, and it specifies a type
that is both constant and volatile.

The x field plays the same role for types as it does in symbols; back ends may define Xtype to
add target-specific fields to the type structure. This facility is most often used to support debug-
gers.

4.1 Type Constructors

Type array(Type ty, int n, int align)
returns a type for an ‘array of n elements of type ty.’ If align is nonzero, it is used for the
alignment instead of ty->align.

Type atop(Type ty)
returns a type for a pointer to the element type of array type ty.
7

Type func(Type ty, Type *proto, int oldstyle)
returns a type for a function that returns type ty and has the specified prototype. If oldstyle
is one, proto may be null.

Type ptr(Type ty)
returns a type for ‘pointer to ty.’

Type qual(int op, Type ty)
returns a qualified version of type ty. op must be CONST or VOLATILE.

4.2 Operations on Types

The innards of types are revealed so that back ends may read the size and align fields, read
and write the x fields, and pass the type field to some of the macros/functions defined in this
section. By convention, these are the only fields the back ends are allowed to inspect. In practice,
however, back ends may also need to inspect the u fields to, for example, examine structure
fields and function prototypes.

int hasproto(Type ty)
returns 1 of the function type ty has a prototype and 0 otherwise.

Type btot(int suffix, int size)
returns a type of size bytes that corresponds to the node type suffix. See ttob and Sec. 5.

Type deref(Type ty)
returns the reference type of pointer type ty.

Type freturn(Type ty)
return the return type of the function type ty.

int isvolatile(Type t)
int isconst(Type ty)
int isarray(Type ty)
int isstruct(Type ty)
int isunion(Type ty)
int isfunc(Type ty)
int isptr(Type ty)
int ischar(Type ty)
int isint(Type ty)
int isfloat(Type ty)
int isarith(Type ty)
int isunsigned(Type ty)
int isscalar(Type ty)
int isenum(Type ty)

Each of these type predicates returns 1 if ty is the type indicated by its name and 0 otherwise.

int ttob(Type ty)
returns the node operator type suffix that corresponds to type ty. See btot and Sec. 5.

Type unqual(Type ty)
returns the unqualified version of type ty.

int variadic(Type ty)
returns 1 if function type ty has a variable number of arguments.

5. Dag Operators

Executable code is specified by dags. A function body is a sequence, or forest, of dags, each of
8

which is passed to the back end via gen. Dag nodes, sometimes called nodes, are defined by:

typedef struct node *Node;

struct node {
short op;
short count;
Symbol syms[3];
Node kids[2];
Node link;
Xnode x;

}

The elements of kids point to the operand nodes. Some dag operators also take one or two sym-
bol-table pointers as operands; these appear in syms. The back end may use the third syms for
its own purposes; the front end uses it, too, but its uses are temporary and occur before dags are
passed to the back end. The link field points to the root of the next dag in the forest.

 The count field records the number of times the value of this node is used or referred to by
others. Only references from kids count; link references don’t count because they don’t repre-
sent a use of the value of the node. Indeed, link is meaningful only for root nodes, which are
executed for side effect, not value. If the interface flag wants_dag is zero, roots always have a
zero count. The generated code for shared nodes—those whose count exceeds one—must evalu-
ate the node only once; the value is used count times.

The x field is the back end’s extension to nodes. The back end defines the type Xnode in con-
fig.h to hold the per-node data that it needs to generate code.

The op field a of node structure holds a dag operator, which consists of a generic operator, a
type suffix, and a size indicator. The type suffixes are:

enum {
F=FLOAT,
I=INT,
U=UNSIGNED,
P=POINTER,
V=VOID,
B=STRUCT

}

Given a generic operator o, a type suffix t, and a size modifier s, a type- and size-specific opera-
tor is formed by o+t+sizeop(s). For example, ADD+F+sizeop(4) forms the operator ADDF4,
which denotes the sum of two 4-byte floats. Similarly, ADD+F+sizeop(8) forms ADDF8, which
denotes 8-byte floating addition.

Table 1 lists each generic operator, its valid type suffixes, and the number of kids and syms
that it uses; multiple values for kids indicate type-specific variants. The notations in the syms
column give the number of syms values and a one-letter code that suggests their uses: 1V indi-
cates that syms[0] points to a symbol for a variable, 1C indicates that syms[0] is a constant,
and 1L indicates that syms[0] is a label. For 1S, syms[0] is a constant whose value is a size in
bytes; 2S adds syms[1], which is a constant whose value is an alignment. Finally, 1T indicates
the syms[0]->type is the only field of interest.

The entries in the Sizes column indicate sizes of the operators that back ends must imple-
ment. Letters denote the size of float (f), double (d), long double (x), character (c), short integer
9

Table 1. Node operators.

syms kids Operator
Type

Suffixes
Sizes Operation

1V 0 ADDRF ...P.. p address of a param-
eter

1V 0 ADDRG ...P.. p address of a global

1V 0 ADDRL ...P.. p address of a local

1C 0 CNST FIUP.. fdx csilh csilh p constant

1 BCOM .IU... ilh ilh bitwise comple-
ment

1S 1 CVF FI.... fdx ilh convert from float

1S 1 CVI FIU... fdx csilh csilhp convert from
signed integer

1S 1 CVP ..U.. p convert from
pointer

1S 1 CVU .IUP.. csilh csilh p convert from
unsigned integer

1 INDIR FIUP.B fdx csilh csilh p fetch

1 NEG FI.... fdx ilh negation

2 ADD FIUP.. fdx ilh ilhp p addition

2 BAND .IU... ilh ilh bitwise AND

2 BOR .IU... ilh ilh bitwise inclusive
OR

2 BXOR .IU... ilh ilh bitwise exclusive
OR

2 DIV FIU... fdx ilh ilh division

2 LSH .IU... ilh ilh left shift

2 MOD .IU... ilh ilh modulus

2 MUL FIU... fdx ilh ilh multiplication

2 RSH .IU... ilh ilh right shift

2 SUB FIUP.. fdx ilh ilhp p subtraction

2S 2 ASGN FIUP.B fdx csilh csilh p assignment

1L 2 EQ FIU... fdx ilh ilhp jump if equal

1L 2 GE FIU... fdx ilh ilhp jump if greater
than or equal

1L 2 GT FIU... fdx ilh ilhp jump if greater
than

1L 2 LE FIU... fdx ilh ilhp jump if less than or
equal

1L 2 LT FIU... fdx ilh ilhp jump if less than

1L 2 NE FIU... fdx ilh ilhp jump if not equal

2S 1 ARG FIUP.B fdx ilh ilh p argument

1T
1T

1
2

CALL
CALL

FIUPV.
.....B

fdx ilh ilh p function call

1
0

RET
RET

FIUP..
....V.

fdx ilh ilh p function return

1 JUMPV. unconditional jump

1L 0 LABELV. label definition
10

(s), integer (i), long integer (l), ‘long long’ integer (h), and pointer (p). These sizes are separated
into sets for each of type suffix from FUIP; the V and B suffixes don’t have size modifiers.

The actual values for the size modifiers, fdxcsilhp, depend on the target. A specification like
ADDFf denotes the operator ADD+F+sizeop(f), where ‘f ’ is replaced by a target-dependent
value, e.g., ADDF4 and ADDF8. For example, back ends must implement the following CVI and MUL
operators.

CVIFf CVIFd CVIFx
CVIIc CVIIs CVIIi CVIIl CVIIh
CVIUc CVIUs CVIUi CVIUl CVIUh CVIUp

MULFf MULFd MULFx
MULIi MULIl MULIh
MULUi MULUl MULUh

On most platforms, there are fewer than three sizes of floats and six sizes of integers, and
pointers are usually the same size as one of the integers. And lcc doesn't support the ‘long long’
type, so h is not currently used. So, the set of platform-specific operators is usually smaller than
the list above suggests. For example, the X86, SPARC, and MIPS back ends implement the follow-
ing CVI and MUL operators.

CVIF4 CVIF8
CVII1 CVII2 CVII4
CVIU1 CVIU2 CVIU4

MULF4 MULF8
MULI4
MULU4

The set of operators is thus target-dependent; for example, ADDI8 appears only if the target
supports an 8-byte integer type. The lcc distribution includes a program, ops.c, that, given a set
of sizes, prints the required operators and their values, e.g.,

% ops c=1 s=2 i=4 l=4 h=4 f=4 d=8 x=8 p=4
...
CVIF4=4225 CVIF8=8321
CVII1=1157 CVII2=2181 CVII4=4229
CVIU1=1158 CVIU2=2182 CVIU4=4230
...
MULF4=4561 MULF8=8657
MULI4=4565
MULU4=4566
...
131 operators

The leaf operators yield the address of a variable or the value of a constant. syms[0] identi-
fies the variable or constant. The unary operators accept and yield a value. The binary operators
accept two values and yield one.

The type suffix for a conversion operator denotes the type of the result and the size indicator
gives the size of the result. For example, CVUI4 converts an unsigned (U) to a 4-byte signed inte-
ger (I4). The syms[0] field points to a symbol-table entry for a integer constant that gives the
11

http://www.cs.princeton.edu/software/lcc/pkg/etc/ops.c

size of the source operand. For example, if syms[0] in a CVUI4 points to a symbol-table entry
for 2, the conversion widens a 2-byte unsigned integer to a 4-byte signed integer. Conversions
that widen unsigned integers zero-extend; those that widen signed integers sign-extend.

The front end composes conversions between types T1 and T2 by widening T1 to its ‘super-
type’, if necessary, converting that result to T2’s supertype, then narrowing the result to T2, if
necessary. The following table lists the supertypes; omitted entries are their own supertypes.

Pointers are converted to an unsigned type of the same size, even when that type is not one of
the integer types.

For example, the front end converts a signed short to a float by first converting it to an int
and then to a float. It converts an unsigned short to an int with a single CVUIi conversion,
when shorts are smaller than ints.
ASGN stores the value of kids[1] into the cell addressed by kids[0]. syms[0] and syms[1]

point to symbol-table entries for integer constants that give the size of the value and its align-
ment. These are most useful for ASGNB, which assigns structures and initializes automatic
arrays.
JUMP is an unconditional jump to the address computed by kids[0]. For most jumps,

kids[0] is a constant ADDRG node, but switch statements compute a variable target, so kids[0]
can be an arbitrary computation. LABEL defines the label given by syms[0], and is otherwise a
no-op. For the comparisons, syms[0] points to a symbol-table entry for the label to jump to if
the comparison is true.

Function calls have a CALL node preceded by zero or more ARG nodes. The front end unnests
function calls—it performs the inner call first, assigns its value to a temporary, and uses the
temporary henceforth—so ARG nodes are always associated with the next CALL node in the for-
est. If wants_dag is one, CALL nodes always appear as roots in the forest. If wants_dag is zero,
only CALL+V nodes appear as roots; other CALL nodes appear as right operands to ASGN nodes,
which are roots.

A CALL node’s syms[0] points to a symbol whose only nonnull field is type, which is the
function type of the callee.
ARG nodes establish the value computed by kids[0] as the next argument. syms[0] and

syms[1] point to symbol-table entries for integer constants that give the size and alignment of
the argument.

In CALL nodes, kids[0] computes the address of the callee. CALL+B nodes are used for calls
to functions that return structures; kids[1] computes the address of a temporary local variable
to hold the returned value. The CALL+B code and the function prologue must collaborate to store
the CALL+B’s kids[1] into the callee’s first local. CALL+B nodes have a count of zero because
the front end references the temporary wherever the returned value is referenced. There is no
RET+B; the front end uses an ASGN+B to the structure addressed by the first local. CALL+B nodes
appear only if the interface flag wants_callb is one; see Sec. 6. In RET nodes, kids[0] com-
putes the value returned.

Type Supertype

signed char int

signed short int

unsigned char int, if sizeof(char) < sizeof(int)
unsigned, otherwise

unsigned short int, if sizeof(short) < sizeof(int)
unsigned, otherwise

void * an unsigned type as large as a pointer
12

Character and short-integer actual arguments are always promoted to the corresponding inte-
ger type even in the presence of a prototype, because most machines must pass at least integers
as arguments. Upon entry to the function, the promoted values are converted back to the type
declared for the formal parameter. For example, the body of

f(char c) { f(c); }

becomes the two forests shown in Figure 4 on a 32-bit target. The solid lines are kids pointers
and the horizontal dashed line is the link pointer. The left forest holds one dag, which narrows
the widened actual argument to the type of the formal parameter. In the left dag, the left
ADDRFP4 c refers to the formal parameter, and the one under the INDIRI4 refers to the actual
argument. The right forest holds two dags. The first widens the formal parameter c to pass it as
an integer, and the second calls f.

In Table 1, the operators listed at and following ASGN are used for their side effects. They
appear as roots in the forest, and their reference counts are zero. CALL+F, CALL+I, CALL+U,
CALL+P also yield values, in which case they appear as the right-hand side of ASGN nodes and
have reference counts of one. With these exceptions, all operators with side effects always
appear as roots in the forest of dags, and they appear in the order in which they must be exe-
cuted. The front end communicates all constraints on evaluation order by ordering the dags in
the forest. If the Standard specifies that x must be evaluated before y, then x’s dag will appear in
the forest before y’s, or they will appear in the same dag with x in the subtree rooted by y. An
example is

int i, *p; f() { i = *p++; }

The code for the body of f generates the forest shown in Figure 5 (for a 32-bit target). The
INDIRP4 fetches the value of p, and the ASGNP4 changes p’s value to the sum computed by this
INDIRP4 and 4. The ASGNI4 sets i to the integer pointed to by the original value of p. Since the
INDIRP4 appears in the forest before p is changed, the INDIRI4 is guaranteed to use the original
value of p.

Figure 4. Forests for f(char c) { f(c); }

ASGNI1

ADDRFP4
c

CVII1
4

INDIRI4

ADDRFP4
c

ARGI4

CVII4
1

INDIRI1

ADDRFP4
c

CALLI4

ADDRP4
f

13

5.1 Node Constructors

Node newnode(int op, Node left, Node right, Symbol sym)
allocates a dag node; initializes the op field to op, kids[0] to left, kids[1] to right, and
syms[0] to sym; and returns a pointer to the new node.

5.2 Operations on Node Operators

int generic(int op)
returns the generic operator for op; that is, an operator without a type suffix or size modifier.
For example, generic(ADD+F+sizeop(8)) is ADD.

int opindex(int op)
returns the operator number for op and is used to map the generic operators into a contigu-
ous range of integers.

int opsize(int op)
extracts and returns the size modifier from op. For example, opsize(ADD+F+sizeop(8)) is 8.

int optype(int op)
returns the type suffix for op, which is one of F, I, U, P, V, or B. For example,
optype(ADD+F+sizeop(8)) is F.

int sizeop(int n)
converts n to a size modifier, which can be added to a generic operator and a type suffix; e.g.,
ADD+F+sizeop(8) forms ADDF4, 4-byte floating-point addition.

int specific(int op)
returns the type-specific operator for op; that is, an operator without a size modifier. For
example, specific(ADD+F+sizeop(8)) is ADD+F.

6. Interface Flags

The interface flags help configure the front end for a target.

unsigned little_endian:1
should be one if the target is a little endian and zero if it’s a big endian. A computer is a little
endian if the least significant byte in each word has the smallest address of the bytes in the
word. For example, little endians lay out the word with the 32-bit unsigned value 0xAABBCCDD
thus:

Figure 5. Forest for int i, *p; f() { i = *p++; }.

AA BB CC DD

INDIRP4

ADDRGP4
p

INDIRI4

CNSTI4
4

ASGNP4

ADDP4

ASGNI4

ADDRGP4
i

14

where the addresses of the bytes increase from the right to the left. A computer is a big
endian if the least significant byte in each word has the largest address of the bytes in the
word. For example, big endians lay out the word with the unsigned value 0xAABBCCDD thus:

Lcc’s front end lays out a list of bit fields in the addressing order of the bytes in an unsigned
integer: from the least significant byte to the most significant byte on little endians and vice
versa on big endians. The Standard permits either order, but following increasing addresses is
the prevailing convention.

unsigned mulops_calls:1
should be zero if the hardware implements multiply, divide, and remainder. It should be one
if the hardware leaves these operations to library routines. The front end unnests nested calls,
so it needs to know which operators are emulated by calls.

unsigned wants_callb:1
tells the front end to emit CALL+B nodes to invoke functions that return structures. If
wants_callb is zero, the front end generates no CALL+B nodes but implements them itself,
using simpler operations: It passes an extra, leading, hidden argument that points to a tempo-
rary; it ends each structure function with an ASGN+B dag that copies the return value to this
temporary; and it has the caller use this temporary when it needs the structure returned.
When wants_callb is one, the front end generates CALL+B nodes. The kids[1] field of a
CALL+B computes the address of the location at which to store the return value, and the first
local of any function that returns a structure is assumed to hold this address. Back ends that
set wants_callb to one must implement this convention by, for example, initializing the
address of the first local accordingly. If wants_callb is zero, the back end cannot control the
code for functions that return structure arguments, so it cannot, in general, mimic an existing
calling convention.

unsigned wants_argb:1
tells the front end to emit ARG+B nodes to pass structure arguments. If wants_argb is zero,
the front end generates no ARG+B nodes but implements structure arguments itself using sim-
pler operations: It builds an ASGN+B dag that copies the structure argument to a temporary; it
passes a pointer to the temporary; it adds an extra indirection to references to the parameter
in the callee; and it changes the types of the callee’s formals to reflect this convention. It also
sets structarg for these parameters to distinguish them from bona fide structure pointers. If
wants_argb is zero, the back end cannot control the code for structure arguments, so it can-
not, in general, mimic an existing calling convention.

unsigned left_to_right:1
tells the front end to evaluate and present the arguments to the back end left to right. That is,
the ARG nodes that precede the CALL appear in the same order as the arguments in the source
code. If left_to_right is zero, arguments are evaluated and presented right to left. The
Standard permits either order.

unsigned wants_dag:1
tells the front end to pass dags to the back end. If it’s zero, the front end undags all nodes
with reference counts exceeding one. It creates a temporary, assigns the node to the tempo-
rary, and uses the temporary wherever the node had been used. When wants_dag is zero, all
reference counts are thus zero or one, and only trees, which are degenerate dags, remain;
there are no general dags.

unsigned unsigned_char:1
tells the front end whether plain characters are signed or unsigned. If it’s zero, char is a
signed type; otherwise, char is an unsigned type.

DD CC BB AA
15

All the interface flags can be set by command-line options, e.g., -Wf-unsigned_char=1
causes plain characters to be unsigned.

7. Initialization

During initialization, the front end calls

void (*progbeg)(int argc, char *argv[])

argv[0..argc-1] point to those program arguments that are not recognized by the front end,
and are thus deemed target-specific. progbeg processes such options and initializes the back
end.

At the end of compilation, the front end calls

void (*progend)(void)

to give the back end an opportunity to finalize its output. On some targets, progend has nothing
to do and is thus empty.

8. Definitions

Whenever the front end defines a new symbol with scope CONSTANTS, LABELS, or GLOBAL, or a
static variable, it calls

void (*defsymbol)(Symbol p)

to give the back end an opportunity to initialize its Xsymbol field, p->x. For example, the back
end might want to use a different name for the symbol. The conventions on some targets in this
book prefix an underscore to global names. The Xsymbol fields of symbols with scope PARAM
are initialized by function, those with scope LOCAL+k by local, and those that represent
address computations by address.

A symbol is exported if it’s defined in the module at hand and used in other modules. It’s
imported if it’s used in the module at hand and defined in some other module. The front end
calls

void (*export)(Symbol p)
void (*import)(Symbol p)

to announce an exported or imported symbol. Only nonstatic variables and functions can be
exported. The front end always calls export before defining the symbol, but it may call import
at any time, before or after the symbol is used. Most targets require export to emit an assembler
directive. Some require nothing from import.

void (*global)(Symbol p)

emits code to define a global variable. The front end will already have called segment, described
below, to direct the definition to the appropriate logical segment, and it will have set p->u.seg
to that segment. It will follow the call to global with any appropriate calls to the data initializa-
tion functions. global must emit the necessary alignment directives and define the label.

The front end announces local variables by calling
16

void (*local)(Symbol p)

It announces temporaries likewise; these have the p->temporary flag set, which indicates that
the symbol will be used only in the next call to gen. If a temporary’s p->u.t.cse field is non-
null, it points to the Node that computes the value assigned to the temporary. local must ini-
tialize p->x, which usually holds data like the local’s stack offset or register number.

The front end calls

void (*address)(Symbol p, Symbol q, long n)

to initialize q to a symbol that represents an address of the form x+n, where x is the address rep-
resented by p and n is positive or negative. Like defsymbol, address initializes q->x, but it does
so based on the values of p->x and n. A typical address adds p’s stack offset to n for locals and
parameters, and sets q->x.name to p->x.name concatenated with +n or -n for other variables.
For example, if n is 40 and p points to a symbol with the source name array, and if the back end
forms names by prefixing an underscore, then address will create the name _array+40, so that
the addition can be done by the assembler instead of at run time. address accepts globals,
parameters, and locals, and is called only after these symbols have been initialized by defsym-
bol, function, or local. Also, address is optional: If the function pointer in the interface
record is null, the front end will not call address.

When the front end announces a symbol by calling one of the interface procedures above, it
sets the symbol’s defined flag after the call. This flag prevents the front end from announcing a
symbol more than once.

Lcc’s front end manages four logical segments that separate code, data, and literals:

enum { CODE=1, BSS, DATA, LIT }

The front end emits executable code into the CODE segment, defines uninitialized variables in
the BSS segment, and it defines and initializes initialized variables in the DATA segment and con-
stants in the LIT segment. The front end calls

void (*segment)(int seg)

to announce a segment change. The argument is one of the segment codes above. segment maps
the logical segments onto the segments provided by the target machine.
CODE and LIT can be mapped to read-only segments; BSS and DATA must be mapped to seg-

ments that can be read and written. The CODE and LIT segments can be mapped to the same seg-
ment and thus combined. Any combination of BSS, DATA, and LIT can be combined likewise.
CODE would be combined with them only on single-segment targets.

9. Constants

The interface functions

void (*defaddress)(Symbol p)
void (*defconst)(int suffix, int size, Value v)
17

initialize constants. defconst emits directives to define a cell and initialize it to a constant
value. v is the value, and suffix encodes its type and thus which element of the Value v to
access, as shown in the following table.

defconst must narrow v.x when size is less than sizeof v.x; e.g., to emit an unsigned char,
defconst should emit (unsigned char)v.u.

If suffix is P, v.p holds a numeric constant of some pointer type. These originate in declara-
tions like char *p=(char*)0xF0. defaddress initializes pointer constants that involve symbols
instead of numbers.

The defconst functions in the distributed back ends permit cross-compilation, so they com-
pensate for different representations and byte orders. For example, they swap the two halves of
a double if compiling for a big endian on a little endian or vice versa.

In general, Standard C compilers can’t leave the encoding of floating-point constants to the
assembler, because few assemblers implement C’s casts. For example, the correct initialization
for

double x = (float)0.3

has zeros in the least significant bits. Typical assembler directives like

.double 0.3

can’t implement casts and thus erroneously initialize x without zeros in the least significant
bits, so most defconsts must initialize doubles by emitting two unsigneds, for example.

void (*defstring)(int n, char *s)

emits code to initialize a string of length len to the characters in s. The front end converts
escape sequences like \000 into the corresponding ASCII characters. Null bytes can be embed-
ded in s, so they can’t flag its end, which is why defstring accepts not just s but also its length.

void (*space)(int n)

emits code to set aside n zero bytes.

10. Functions

The front end compiles functions into private data structures. It completely consumes each
function before passing any part of the function to the back end. This organization permits cer-
tain optimizations. For example, only by processing complete functions can the front end iden-
tify the locals and parameters whose address is not taken; only these variables may be assigned

suffix v Field Type

F v.d float, double, long double

I v.i signed char, signed short, signed int,
signed long

U v.u unsigned char, unsigned short,
unsigned int, unsigned long

P v.p void *, function pointers
18

to registers.
Three interface functions and two front-end functions collaborate to compile a function:

void (*function)(Symbol f, Symbol caller[], Symbol callee[], int ncalls)
void (*emit)(Node)
Node (*gen)(Node)

void emitcode(void)
void gencode(Symbol caller[], Symbol callee[])

At the end of each function, the front end calls function to generate and emit code. The typical
form of function is

void function(Symbol f, Symbol caller[], Symbol callee[], int ncalls) {
…initialize…
gencode(caller, callee);
…emit prologue…
emitcode();
…emit epilogue…

}

gencode is a front-end procedure that traverses the front end’s private structures and passes
each forest of dags to the back end’s gen, which selects code, annotates the dag to record its
selection, and returns a dag pointer. gencode also calls local to announce new locals, block-
beg and blockend to announce the beginning and end of each block, and so on. emitcode is a
front-end procedure that traverses the private structures again and passes each of the pointers
returned by gen to emit to emit the code.

This organization offers the back-end flexibility in generating function prologue and epilogue
code. Before calling gencode, function initializes the Xsymbol fields of the function’s parame-
ters and does any other necessary per-function initializations. After calling gencode, the size of
the procedure activation record, or frame, and the registers that need saving are known; this
information is usually needed to emit the prologue. After calling emitcode to emit the code for
the body of the function, function emits the epilogue.

The argument f to function points to the symbol for the current function, and ncalls is the
number of calls to other functions made by the current function. ncalls helps on targets where
leaf functions—those that make no calls—get special treatment.

 The arguments caller and callee are arrays of pointers to symbols; a null pointer termi-
nates each. The symbols in caller are the function parameters as passed by a caller; those in
callee are the parameters as seen within the function. For many functions, the symbols in each
array are the same, but they can differ in both sclass and type. For example, in

single(x) float x; { … }

a call to single passes the actual argument as a double, but x is a float within single. Thus,
caller[0]->type is doubletype, the front-end global that represents doubles, and
callee[0]->type is floattype. And in

int strlen(register char *s) { … }

caller[0]->sclass is AUTO and callee[0]->sclass is REGISTER. Even without register decla-
rations, the front end assigns frequently referenced parameters to the REGISTER class, and sets
19

callee’s sclass accordingly. To avoid thwarting the programmer’s intentions, this assignment
is made only when there are no explicit register locals.
caller and callee are passed to gencode. If caller[i]->type differs from

callee[i]->type, or the value of caller[i]->sclass differs from callee[i]->sclass, gen-
code generates an assignment of caller[i] to callee[i]. If the types are not equal, this assign-
ment may include a conversion; for example, the assignment to x in single includes a
truncation of a double to a float. For parameters that include register declarations, function
must assign a register and initialize the x field accordingly, or change the callee’s sclass to
AUTO to prevent an unnecessary assignment of caller[i] to callee[i].
function could also change the value of caller[i]->sclass from AUTO to REGISTER if it

wished to assign a register to that parameter. The MIPS calling convention, for example, passes
some arguments in registers, so function assigns those registers to the corresponding callees
in leaf functions. If, however, caller[i]->addressed is set, the address of the parameter is
taken in the function body, and it must be stored in memory on most machines.

Most back ends define for each function activation an argument-build area to store the argu-
ments to outgoing calls. The front end unnests calls, so the argument-build area can be used for
all calls. The back end makes the area big enough to hold the largest argument list. When a func-
tion is called, the caller’s argument-build area becomes the callee’s actual arguments.

Calls are unnested because some targets pass some arguments in registers. If we try to gener-
ate code for a nested call like f(a,g(b)), and if arguments are evaluated and established left to
right, it is hard not to generate code that loads a into the first argument register and then
destroys it by loading b into the same register, because both a and b belong in the first argument
register, but a belongs there later.

Some calling conventions push arguments on a stack. They can handle nested calls, so an
argument-build area is not always necessary. Unnesting has the advantage that stack overflow
can occur only at function entry, which is useful on targets that require explicit prologue code to
detect stack overflow.

For each block, the front end first announces locals with explicit register declarations, in
order of declaration, to permit programmer control of register assignment. Then it announces
the rest, starting with those that it estimates to be most frequently used. It assigns REGISTER
class to even these locals if their addresses are not taken and if they are estimated to be used
more than twice. This announcement order and sclass override collaborate to put the most
promising locals in registers even if no registers were declared.

If p->sclass is REGISTER, local may decline to allocate a register and may change sclass to
AUTO. The back end has no alternative if it has already assigned all available registers to more
promising locals. As with parameters, local could assign a register to a local with sclass equal
to AUTO and change sclass to REGISTER, but it can do so only if the symbol’s addressed flag is
zero.

Source-language blocks bracket the lifetime of locals. gencode announces the beginning and
end of a block by calling:

void (*blockbeg)(Env *e)
void (*blockend)(Env *e)

Env, defined in config.h, is target-specific. It typically includes the data necessary to reuse that
portion of the local frame space associated with the block and to release any registers assigned
to locals within the block. For example, blockbeg typically records in *e the size of the frame
and the registers that are busy at the beginning of the block, and blockend restores the register
state and updates the frame size if the new block has pushed deeper than the maximum depth
seen so far.
20

The front end calls gen to select code. It passes gen a forest of dags. For example, Figure 5
shows the forest for

int i, *p; f() { i = *p++; }

A postorder traversal of this forest yields the linearized representation shown in the table
below.

This forest consists of three dags, rooted at nodes 2, 5, and 8. The INDIRP4 node, which fetches
the value of p, comes before node 5, which changes p, so the original value of p is available for
subsequent use by node 7, which fetches the integer pointed to by that value.
gen traverses the forest and selects code, but it emits nothing because it may be necessary to

determine, for example, the registers needed before the function prologue can be emitted. So
gen merely annotates the nodes in their x fields to identify the code selected, and returns a
pointer that is ultimately passed to the back end’s emit to output the code. Once the front end
calls gen, it does not inspect the contents of the nodes again, so gen may modify them freely.
emit emits a forest. Typically, it traverses the forest and emits code by switching on the

opcode or some related value stored in the node by gen.

11. Interface Binding

The compiler option -target=name identifies the desired target. The name-interface pairs for
the available targets are stored in

typedef struct binding {
char *name;
Interface *ir;

} Binding;

Binding bindings[]

The front end identifies the one in the -target and stores a pointer to its interface record in

Interface *IR

Whenever the front end needs to call an interface function, or read a type metric or an interface
flag, it uses IR.

Back ends must define and initialize bindings, which associates names and interface records.
For example, the back ends in the lcc distribution define bindings in bind.c.

Node # op count kids syms

1 ADDGRP4 2 p

2 INDIRP4 2 1

3 CNSTI4 1 4

4 ADDP4 1 2, 3

5 ASGNP4 0 1, 4 4, 4

6 ADDRGP4 1 i

7 INDIRI4 1 2

8 ASGNI4 0 6, 7 4, 4
21

http://www.cs.princeton.edu/software/lcc/pkg/src/bind.c

12. Upcalls

In addition to the functions defined in the previous sections, back end may call the front-end
functions listed below to perform output, allocate storage, generate labels, and manage strings.
They also may read the globals listed below.

void *allocate(unsigned long n, unsigned arena)
permanently allocates n bytes in arena, which can be one of PERM, FUNC, or STMT and returns
a pointer to the first byte. The space is guaranteed to be aligned to suit the host machine’s
most demanding type. Data allocated in PERM are deallocated at the end of compilation; data
allocated in FUNC and STMT are deallocated after compiling functions and statements.

List append(void *x, List list)
appends x to the list list and returns the modified list. Lists are defined by

typedef struct list *List;

struct list {
void *x;
List link;

}

The empty list is the null pointer, so append(x, NULL) creates a one-element list containing x.
Lists are circular: a List points to the last element.

Symbol cfunc
is the symbol-table entry for the current function being compiled.

const char *firstfile
if nonnull, is the file name found on the first ‘#line’ directive encountered during parsing.

void fprint(FILE *f, const char *fmt, ...)
void print(const char *fmt, ...)

print formatted data to the file stream f (fprint) or to standard output (print). These func-
tions are like Standard C's fprintf and printf, but support only some of the standard con-
version specifiers and do not support flags, precision, and field-width specifications. They
support additional conversion specifiers useful for generating code. Table 2 lists the conver-
sion specifiers.

int genlabel(int n)
increments the generated-identifier counter by n and returns its old value.

int length(List list)
returns the number of elements in list.

void **ltov(List *list, int arena)
copies the n elements in list into a null-terminated array of pointers in arena, deallocates
the list structures, sets *list to null, and returns the array. The array has n+1 elements
including the terminating null.

int roundup(int n, int m)
is n rounded up to the next multiple of m, which must be a power of two.

const char *string(const char *str)
returns stringn(str, strlen(str)).

const char *stringd(long n)
returns the string representation of n; stringd installs the returned string in the string table,
if necessary.
22

const char *stringf(const char *fmt, ...)
formats its arguments into a string, installs that string to the string table, if necessary, and
returns a pointer to the installed string. See print for formatting details.

const char *stringn(const char *str, int len)
installs str[0..len-1] in the string table, if necessary, and returns a pointer to the installed
copy. The string table holds only one copy of each unique string, so strings returned by any of
the string functions can be compared for equality by comparing only their pointers.

References

1. C. W. Fraser and D. R. Hanson, A Retargetable Compiler for C: Design and Implementation, Addison-
Wesley, Menlo Park, CA, 1995.

2. C. W. Fraser and D. R. Hanson, ‘Installing lcc,’ http://www.cs.princeton.edu/software/lcc/pkg/
doc/install.html, July 2001.

Table 2. Format conversion specifiers.

Specifiers Argument Types
Action or Corresponding printf

Specifiers

%d %D int, long %d %ld

%u %U unsigned, unsigned long %u %lu

%o unsigned %o

%x %X unsigned, unsigned long %x %lx

%f %e %g double %f %e %g

%p void* %x, if the argument is null
%#x, if the argument is nonnull

%s const char* %s

%S const char*, int print a string of a specified length

%I int print spaces

%k int print an English rendition for a
token code

%t Type print an English rendition for a
Type

%w Coordinate print a source coordinate
23

http://www.cs.princeton.edu/software/lcc/pkg/doc/install.html
http://www.cs.princeton.edu/software/lcc/pkg/doc/install.html

	1.� Introduction
	2.� Interface Records
	3.� Symbols
	Symbol constant(Type ty, Value v)
	Symbol findlabel(int label)
	Symbol intconst(int n)
	Symbol newtemp(int sclass, int suffix, int size)

	4.� Types
	Type array(Type ty, int n, int align)
	Type atop(Type ty)
	Type func(Type ty, Type *proto, int oldstyle)
	Type ptr(Type ty)
	Type qual(int op, Type ty)
	int hasproto(Type ty)
	Type btot(int suffix, int size)
	Type deref(Type ty)
	Type freturn(Type ty)
	int isvolatile(Type t)
	int isconst(Type ty)
	int isarray(Type ty)
	int isstruct(Type ty)
	int isunion(Type ty)
	int isfunc(Type ty)
	int isptr(Type ty)
	int ischar(Type ty)
	int isint(Type ty)
	int isfloat(Type ty)
	int isarith(Type ty)
	int isunsigned(Type ty)
	int isscalar(Type ty)
	int isenum(Type ty)
	int ttob(Type ty)
	Type unqual(Type ty)
	int variadic(Type ty)

	5.� Dag Operators
	Table 1.� Node operators.
	Node newnode(int op, Node left, Node right, Symbol sym)
	int generic(int op)
	int opindex(int op)
	int opsize(int op)
	int optype(int op)
	int sizeop(int n)
	int specific(int op)

	6.� Interface Flags
	unsigned little_endian:1
	unsigned mulops_calls:1
	unsigned wants_callb:1
	unsigned wants_argb:1
	unsigned left_to_right:1
	unsigned wants_dag:1
	unsigned unsigned_char:1

	7.� Initialization
	void (*progbeg)(int argc, char *argv[])
	void (*progend)(void)

	8.� Definitions
	void (*defsymbol)(Symbol p)
	void (*export)(Symbol p)
	void (*import)(Symbol p)
	void (*global)(Symbol p)
	void (*local)(Symbol p)
	void (*address)(Symbol p, Symbol q, long n)
	void (*segment)(int seg)

	9.� Constants
	void (*defaddress)(Symbol p)
	void (*defconst)(int suffix, int size, Value v)
	void (*defstring)(int n, char *s)
	void (*space)(int n)

	10.� Functions
	void (*function)(Symbol f, Symbol caller[], Symbol callee[], int ncalls)
	void (*emit)(Node)
	Node (*gen)(Node)
	void (*blockbeg)(Env *e)
	void (*blockend)(Env *e)

	11.� Interface Binding
	12.� Upcalls
	void *allocate(unsigned long n, unsigned arena)
	List append(void *x, List list)
	Symbol cfunc
	const char *firstfile
	void fprint(FILE *f, const char *fmt, ...)
	void print(const char *fmt, ...)
	Table 2.� Format conversion specifiers.
	int genlabel(int n)
	int length(List list)
	void **ltov(List *list, int arena)
	int roundup(int n, int m)
	const char *string(const char *str)
	const char *stringd(long n)
	const char *stringf(const char *fmt, ...)
	const char *stringn(const char *str, int len)

	References

